Metastases are the main cause of cancer-induced deaths worldwide. To block tissue invasion, development of extracellular vesicles (EVs) as therapeutic carriers, appears as an exciting challenge. To this aim, we took advantage of the anti-invasive function of NFAT3 transcription factor we identified previously in breast cancer and addressed the opportunity to transfer this inhibitory function by EVs. We show here that EVs produced by poorly invasive NFAT3-expressing breast cancer cell lines are competent to block in vitro invasion of aggressive cancer cells from different origins and, in cooperation with macrophages, inhibit cell proliferation and induce apoptosis. Moreover, this inhibitory effect can be improved by overexpression of NFAT3 in the EVs-producing cells. These results were extended in a mouse breast cancer model, with clear impact of inhibitory EVs on tumor growth and metastases spreading. This work identifies EVs produced by NFAT3-expressing breast cancer cells as an anti-tumoral tool to tackle cancer development and metastases dissemination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7265394PMC
http://dx.doi.org/10.1038/s41598-020-65844-xDOI Listing

Publication Analysis

Top Keywords

breast cancer
16
extracellular vesicles
8
produced nfat3-expressing
8
tumor growth
8
evs produced
8
nfat3-expressing breast
8
cancer cells
8
cancer
6
evs
5
vesicles produced
4

Similar Publications

Unveiling the role of PANoptosis-related genes in breast cancer: an integrated study by multi-omics analysis and machine learning algorithms.

Breast Cancer Res Treat

January 2025

Department of Breast Surgery, Thyroid Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No.141, Tianjin Road, Huangshi, 435000, Hubei, China.

Background: The heterogeneity of breast cancer (BC) necessitates the identification of novel subtypes and prognostic models to enhance patient stratification and treatment strategies. This study aims to identify novel BC subtypes based on PANoptosis-related genes (PRGs) and construct a robust prognostic model to guide individualized treatment strategies.

Methods: The transcriptome data along with clinical data of BC patients were sourced from the TCGA and GEO databases.

View Article and Find Full Text PDF

Purpose: Aromatase inhibitor-associated musculoskeletal symptoms (AIMSS) are the most common adverse effects experienced by breast cancer patients. This scoping review aimed to systematically synthesize the predictors/risk factors and outcomes of AIMSS in patients with early-stage breast cancer.

Methods: A systematic search was conducted in PubMed, Web of Science, EMBASE, CINAHL, and the China National Knowledge Internet (CNKI) from inception to December 2024 following the scoping review framework proposed by Arksey and O'Malley (2005).

View Article and Find Full Text PDF

Prognosis of Implant-Based Breast Reconstruction After Mastectomy Flap Necrosis: Predictors of Failure and Salvage.

Aesthetic Plast Surg

January 2025

Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.

Background: In the realm of implant-based breast reconstruction, mastectomy flap necrosis (MFN) is a prevalent yet grave complication that poses a threat to the stability of the inserted prosthesis. Although numerous investigations have scrutinized the risk factors for MFN development, few have delved into the aftermath, specifically implant failure or salvage. This study seeks to appraise the prognosis of the implanted prosthesis following MFN occurrence, as well as identify predictors of such outcomes.

View Article and Find Full Text PDF

The role of human epidermal growth factor 2 (HER2) in male breast cancer (MBC) is poorly defined. A comprehensive description of HER2 status was conducted. A total of 6,015 MBC patients from 45 studies and 135 MBC patients with sequencing data were identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!