Humans differ substantially in how strongly they respond to similar experiences. Theory suggests that such individual differences in susceptibility to environmental influences have a genetic basis. The present study investigated the genetic architecture of Environmental Sensitivity (ES) by estimating its heritability, exploring the presence of multiple heritable components and its genetic overlap with common personality traits. ES was measured with the Highly Sensitive Child (HSC) questionnaire and heritability estimates were obtained using classic twin design methodology in a sample of 2868 adolescent twins. Results indicate that the heritability of sensitivity was 0.47, and that the genetic influences underlying sensitivity to negative experiences are relatively distinct from sensitivity to more positive aspects of the environment, supporting a multi-dimensional genetic model of ES. The correlation between sensitivity, neuroticism and extraversion was largely explained by shared genetic influences, with differences between these traits mainly attributed to unique environmental influences operating on each trait.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8589650 | PMC |
http://dx.doi.org/10.1038/s41380-020-0783-8 | DOI Listing |
BMC Plant Biol
January 2025
Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA.
Background: Fruit quality traits, including taste, flavor, texture, and shelf-life, have emerged as important breeding priorities in blueberry (Vaccinium corymbosum). Organic acids and sugars play crucial roles in the perception of blueberry taste/flavor, where low and high consumer liking are correlated with high organic acids and high sugars, respectively. Blueberry texture and appearance are also critical for shelf-life quality and consumers' willingness-to-pay.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
Non-contact anterior cruciate ligament (ACL) rupture is a common serious orthopaedic disease in humans and dogs. Familial risk has been recognized in both species but interactions between genetic effects and environmental risk are not understood. We investigated ACL rupture heritability, genetic architecture, selection pressure, sharing of risk genes and biological pathways, and polygenic risk score (PRS) prediction of disease risk.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, 01854, MA, USA.
The human body houses many distinct and interconnecting microbial populations with long-lasting systemic effects, where the oral cavity serves as a pathogens' reservoir. The correlation of different disease states strongly supports the need to understand the interplay between the oral tissue niche and microbiome. Despite efforts, the recapitulation of gingival architecture and physiological characteristics of the periodontal niche has yet to be accomplished by traditional cultural strategies.
View Article and Find Full Text PDFNat Commun
January 2025
School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Autophagy, a conserved catabolic process implicated in a diverse array of human diseases, requires efficient fusion between autophagosomes and lysosomes to function effectively. Recently, SNAP47 has been identified as a key component of the dual-purpose SNARE complex mediating autophagosome-lysosome fusion in both bulk and selective autophagy. However, the spatiotemporal regulatory mechanisms of this SNARE complex remain unknown.
View Article and Find Full Text PDFThe cochlear nuclear complex (CN), the starting point for all central auditory processing, encompasses a suite of neuronal cell types highly specialized for neural coding of acoustic signals. However, the molecular logic governing these specializations remains unknown. By combining single-nucleus RNA sequencing and Patch-seq analysis, we reveal a set of transcriptionally distinct cell populations encompassing all previously observed types and discover multiple hitherto unknown subtypes with anatomical and physiological identity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!