Spatially resolved wavefront measurements are presented during nonlinear self-collapse and provide the first detailed characterization of wavefront evolution during filament formation. The wavefront dynamics of key nonlinear processes including Kerr self-focusing, ionization and plasma defocusing, and dynamic spatial replenishment are identified and resolved in both the filament core and reservoir regions. These results are analyzed and interpreted with respect to numerical simulations and provide insight into fundamental aspects of filamentation. They also inform applications based on phase manipulation, such as external beam guiding, and present a new method for measuring the nonlinear index of refraction, n.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7265553 | PMC |
http://dx.doi.org/10.1038/s41598-020-65431-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!