Translation of modulation of drug target activity to therapeutic effect is a critical aspect for all drug discovery programs. In this work we describe the profiling of a non-receptor tyrosine-protein kinase (TYK2) inhibitor which shows a functionally relevant potency shift between human and preclinical species (e.g. murine, dog, macaque) in both biochemical and cellular assays. Comparison of the structure and sequence homology of TYK2 between human and preclinical species within the ATP binding site highlights a single amino acid (I960 → V) responsible for the potency shift. Through TYK2 kinase domain mutants and a TYK2 980I knock-in mouse model, we demonstrate that this single amino acid change drives a functionally relevant potency difference that exists between human and all evaluated preclinical species, for a series of TYK2 inhibitors which target the ATP binding site.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7265552 | PMC |
http://dx.doi.org/10.1038/s41598-020-65762-y | DOI Listing |
Aging Dis
January 2025
The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China.
Increased entropy is a common cause of disease and aging. Lifespan entropy is the overall increase in disorder caused by a person over their lifetime. Aging leads to the excessive production of reactive oxygen species (ROS), which damage the antioxidant system and disrupt redox balance.
View Article and Find Full Text PDFBio Protoc
January 2025
Department of Structural and Cellular Biology, Tulane University, New Orleans, LA, USA.
The initiation and progression of prostate cancer (PCa) are associated with aging. In the history of age-related PCa research, mice have become a more popular animal model option than any other species due to their short lifespan and rapid reproduction. However, PCa in mice is usually induced at a relatively young age, while it spontaneously develops in humans at an older age.
View Article and Find Full Text PDFMolecules
January 2025
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
More than 70% of cancer patients receive radiotherapy during their treatment, with consequent various side effects on normal cells due to high ionizing radiation doses despite tumor shrinkage. To date, many radioprotectors and radiosensitizers have been investigated in preclinical studies, but their use has been hampered by the high toxicity to normal cells or poor tumor radiosensitization effects. Genistein is a naturally occurring isoflavone found in soy products.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland.
The Komodo dragon () is the largest extant lizard and is classified as an endangered species. Despite its rarity, anatomical studies on this species remain limited, hindering a comprehensive understanding of its biology and evolutionary traits. This research presents a detailed anatomical and histological examination of the pelvic limb of a female Komodo dragon, providing valuable insights into the musculoskeletal system of this species.
View Article and Find Full Text PDFNitric Oxide
January 2025
Harvard Medical School, Boston, MA, USA; Division of Pediatric Critical Care Medicine, Massachusetts General Hospital for Children, Boston, MA, USA. Electronic address:
Nitric oxide (NO) is a versatile endogenous molecule with multiple physiological roles, including neurotransmission, vasodilation, and immune regulation. As part of the immune response, NO exerts antimicrobial effects by producing reactive nitrogen species (RNS). These RNS combat pathogens via mechanisms such as DNA deamination, S-nitrosylation of thiol groups, and lipid peroxidation, leading to disruptions in microbial cell membranes and vital protein functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!