AI Article Synopsis

  • The fovea, an important part of the retina, undergoes changes from birth through adolescence, but research on its structure in children is limited.
  • A study involving 48 healthy children aged 5.8 to 15.8 years used advanced imaging techniques to examine foveal properties like thickness, depth, and cone density.
  • Findings indicate that while the shape of the fovea does not vary with age, myopic children have fewer cone photoreceptors compared to non-myopic children, particularly near the foveal center.

Article Abstract

The fovea undergoes significant developmental changes from birth into adolescence. However, there is limited data examining cone photoreceptor density, foveal pit shape, and foveal avascular zone (FAZ) size in children. The purpose of this study was to determine whether overall foveal structure differs as a function of age and refractive status in children. Forty-eight healthy children (ages 5.8 to 15.8 years) underwent optical coherence tomography imaging to quantify foveal point thickness and foveal pit diameter, depth, and slope. Adaptive optics scanning laser ophthalmoscope (AOSLO) images of foveal capillaries and cone photoreceptors were acquired in a subset of children to quantify FAZ metrics and cone densities at 0.2, 0.3, and 0.5 mm eccentricities. Results show that foveal pit and FAZ metrics were not related to age, axial length, or refractive status. However, linear cone density was lower in myopic versus non-myopic children at eccentricities of 0.2 mm (mean ± SD = 50,022 ± 5,878 cones/mm vs 58,989 ± 4,822 cones/mm, P < 0.001) and 0.3 mm (43,944 ± 5,547 cones/mm vs 48,622 ± 3,538 cones/mm, P < 0.001). These results suggest FAZ and foveal pit metrics do not systematically differ with age in children, while myopic eyes have decreased linear cone density near the foveal center. Significance Statement: The development of the fovea begins prior to birth and continues through the early teenage years until it reaches adult-like properties. Although the majority of changes during childhood are related to the maturation and migration of cone photoreceptors, in vivo data describing cone packing in children is limited. We assessed overall foveal structure in children as young as 5.8 years old by quantifying cone density and spacing, foveal avascular zone size, and foveal pit morphometry to investigate potential structural differences as a function of age and refractive status. While foveal avascular zone and foveal pit metrics did not significantly differ with age, results indicate that myopic children have lower linear cone densities close to the foveal center compared to non-myopic children.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7265395PMC
http://dx.doi.org/10.1038/s41598-020-65645-2DOI Listing

Publication Analysis

Top Keywords

foveal pit
12
foveal
8
cone photoreceptor
8
photoreceptor density
8
refractive status
8
faz metrics
8
children
6
cone
5
vivo assessment
4
assessment foveal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!