In the mid-1970s, an intense race to identify endogenous substances that activated the same receptors as opiates resulted in the identification of the first endogenous opioid peptides. Since then, >20 peptides with opioid receptor activity have been discovered, all of which are generated from three precursors, proenkephalin, prodynorphin, and proopiomelanocortin, by sequential proteolytic processing by prohormone convertases and carboxypeptidase E. Each of these peptides binds to all three of the opioid receptor types (, , or ), albeit with differing affinities. Peptides derived from proenkephalin and prodynorphin are broadly distributed in the brain, and mRNA encoding all three precursors are highly expressed in some peripheral tissues. Various approaches have been used to explore the functions of the opioid peptides in specific behaviors and brain circuits. These methods include directly administering the peptides ex vivo (i.e., to excised tissue) or in vivo (in animals), using antagonists of opioid receptors to infer endogenous peptide activity, and genetic knockout of opioid peptide precursors. Collectively, these studies add to our current understanding of the function of endogenous opioids, especially when similar results are found using different approaches. We briefly review the history of identification of opioid peptides, highlight the major findings, address several myths that are widely accepted but not supported by recent data, and discuss unanswered questions and future directions for research. SIGNIFICANCE STATEMENT: Activation of the opioid receptors by opiates and synthetic drugs leads to central and peripheral biological effects, including analgesia and respiratory depression, but these may not be the primary functions of the endogenous opioid peptides. Instead, the opioid peptides play complex and overlapping roles in a variety of systems, including reward pathways, and an important direction for research is the delineation of the role of individual peptides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7330675 | PMC |
http://dx.doi.org/10.1124/mol.120.119388 | DOI Listing |
Pharmaceuticals (Basel)
January 2025
Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA.
There is clinical concern about the combined use of alcohol and opiates. Several lines of evidence support an interaction between alcohol and the endogenous opioid system. Thus, we hypothesized that ethanol, by causing the release of opioid peptides, may sensitize the system to the action of exogenous opioids such as morphine.
View Article and Find Full Text PDFBiomedicines
January 2025
Program of Immunology and Immunotherapy, CIMA-Universidad de Navarra, 31008 Pamplona, Spain.
Fibromyalgia represents a chronic pain disorder characterized by musculoskeletal pain, fatigue, and cognitive impairments. The exact mechanisms underlying fibromyalgia remain undefined; as a result, diagnosis and treatment present considerable challenges. On the other hand, the endogenous opioid system is believed to regulate pain intensity and emotional responses; hence, it might be expected to play a key role in the enhanced sensitivity experienced by fibromyalgia patients.
View Article and Find Full Text PDFFood Res Int
February 2025
Department of Agriculture, University of Naples "Federico II", 80055 Portici, Italy.
β-Casomorphins (BCMs), food-associated peptides resulting from the proteolytic cleavage of β-casein (β-CN), have been widely investigated for their opioid-like activity. This research aimed to identify the presence of BCM7, BCM6, and BCM5 in different bovine milk-deriving blue cheese types and to describe the intricate mechanisms behind their formation, focusing on their origin from cheese with β-CN A1 and A2 variants. Using nanoLC-ESI-Q-Orbitrap-MS/MS and advanced computational tools, we explored the peptidomes of Bleu d'Auvergne, Gorgonzola, Stilton, and Bergader blue cheeses from milk containing both β-CN A1 and A2 variants.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway.
This study focused on identifying amylase-trypsin inhibitors (ATIs) in seven Norwegian-cultivated wheat varieties, including common wheat and ancestral species, and identifying potentially harmful opioid peptides within the digesta of these wheats. LC-MS/MS analysis of tryptic peptides from ATI fractions revealed that the common wheat variety Børsum exhibited the highest diversity of ATIs ( = 24), while they were less represented in tetraploid emmer ( = 11). Hexaploid wheat Bastian showed low diversity and relative abundance of ATIs.
View Article and Find Full Text PDFNeuropsychopharmacol Rep
March 2025
Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
Aim: We aimed to create a rat model of drug-induced parkinsonism and tardive dyskinesia by chronic administration of haloperidol and examine the expression of direct and indirect pathway markers in the striatum of the model rats.
Methods: We treated 21 rats, 14 with haloperidol decanoate and 7 with placebo. The number of vacuous chewing movements per 2 min was counted, and haloperidol-treated rats were classified into two groups: mild and severe tardive dyskinesia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!