Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The osmorespiratory compromise is a physiological trade-off between the characteristics of the gill that promote respiratory gas exchange and those that limit passive flux of ions and water with the environment. In hypoxia, changes in gill blood flow patterns and functional surface area that increase gas transfer can promote an exacerbation in ion and water flux. Our goal was to determine whether the osmorespiratory compromise is flexible, depending on environmental salinity (fresh, isosmotic and sea water) and oxygen levels (hypoxia) in euryhaline killifish, Plasma ion concentrations were minimally affected by hypoxia, indicating a maintenance of osmoregulatory homeostasis. In freshwater killifish, hypoxia exposure reduced branchial Na/K-ATPase and NEM-sensitive ATPase activities, as well as diffusive water flux rates. Unidirectional Na influx and Na efflux decreased during hypoxia in freshwater, but net Na flux remained unchanged. Net loss rates of Cl, K and ammonia were also attenuated in hypoxia, suggesting both transcellular and paracellular reductions in permeability. These reductions appeared to be regulated phenomena as fluxes were restored immediately in normoxia. Na flux rates increased during hypoxia in 11 ppt, but decreased in 35 ppt, the latter suggesting a similar response to hypoxia to that in freshwater. In summary, freshwater and seawater killifish experience a reduction in gill permeability, as seen in other hypoxia-tolerant species. Fish acclimated to isosmotic salinity increased Na influx and efflux rates, as well as paracellular permeability in hypoxia, responses in accord with the predictions of the classic osmorespiratory compromise.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.216309 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!