Genomic instability (GIN), an increased tendency to acquire genomic alterations, is a cancer hallmark. However, its frequency, underlying causes, and disease relevance vary across different cancers. Multiple myeloma (MM), a plasma cell malignancy, evolves through premalignant phases characterized by genomic abnormalities. Next-generation sequencing (NGS) methods are deconstructing the genomic landscape of MM across the continuum of its development, inextricably linking malignant transformation and disease progression with increasing acquisition of genomic alterations, and illuminating the mechanisms that generate these alterations. Although GIN drives disease evolution, it also creates vulnerabilities such as dependencies on 'superfluous' repair mechanisms and the induction of tumor-specific antigens that can be targeted. We review the mechanisms of GIN in MM, the associated vulnerabilities, and therapeutic targeting strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.trecan.2020.05.006 | DOI Listing |
Primary testicular diffuse large B-cell lymphoma (PT-DLBCL) is a rare and aggressive lymphoma with molecular heterogeneity not well characterize. In this study, we performed next-generation sequencing analysis for a large number of DNA and RNA samples from patients with PT-DLBCL. DNA sequencing analysis identified ≥ 3 chromosomes with copy number variations (CNVs) and microsatellite instability as prognostic biomarkers, rather than mutations and genetic subtypes.
View Article and Find Full Text PDFProtein Pept Lett
January 2025
Scientific Research Center, Beijing ChosenMed Clinical Laboratory Co., Ltd. 101, 1F, Building 3, No.156 Jinghai 4th Road, Beijing Economic and Technological Development Zone, Beijing, 100176, China.
Background: The role of ZNF165 in only a few tumors has been reported. ZNF165 plays an important role in liver cancer, gastric cancer, and breast cancer, especially in regulating the immune microenvironment, promoting tumor cell proliferation and migration, and serving as a potential target for immunotherapy.
Objective: This study aimed to enhance an understanding of how the ZNF165 gene functions and influences cancer development.
Commun Biol
January 2025
Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
Genomic instability is the main cause of abnormal embryo development and abortion. NLRP7 dysfunctions affect embryonic development and lead to Hydatidiform Moles, but the underlying mechanisms remain largely elusive. Here, we show that NLRP7 knockout affects the genetic stability, resulting in increased DNA damage in both human embryonic stem cells and blastoids, making embryonic cells in blastoids more susceptible to apoptosis.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Japan.
Integration of human papillomavirus (HPV) into the host genome drives HPV-positive head and neck squamous cell carcinoma (HPV HNSCC). Whole-genome sequencing of 51 tumors revealed intratumor heterogeneity of HPV integration, with 44% of breakpoints subclonal, and a biased distribution of integration breakpoints across the HPV genome. Four HPV physical states were identified, with at least 49% of tumors progressing without integration.
View Article and Find Full Text PDFCancer Genet
January 2025
Cincinnati Children's Hospital Medical Center, Division of Oncology, Cincinnati, OH, USA; University of Cincinnati College of Medicine, Cincinnati, OH, USA. Electronic address:
Introduction: POT1 tumor predisposition (POT1-TPD) is an autosomal dominant disorder characterized by increased lifetime malignancy risk. Melanoma, angiosarcoma, and chronic lymphocytic leukemia are the most frequently reported malignancies [1]. Protection of telomeres protein 1 (POT1) is part of the shelterin protein complex to maintain/protect telomeres [2].
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!