Background: In eco-epidemiological studies, Leishmania detection in vectors and reservoirs is frequently accomplished by high-throughput and sensitive molecular methods that target minicircle kinetoplast DNA (kDNA). A pan-Leishmania SYBR green quantitative PCR (qPCR) assay which detects the conserved spliced-leader RNA (SL RNA) sequence was developed recently. This study assessed the SL RNA assay performance combined with a crude extraction method for the detection of Leishmania in field-collected and laboratory-reared sand flies and in tissue samples from hyraxes as reservoir hosts.
Methods: Field-collected and laboratory-infected sand fly and hyrax extracts were subjected to three different qPCR approaches to assess the suitability of the SL RNA target for Leishmania detection. Nucleic acids of experimentally infected sand flies were isolated with a crude extraction buffer with ethanol precipitation and a commercial kit and tested for downstream DNA and RNA detection. Promastigotes were isolated from culture and sand fly midguts to assess whether there was difference in SL RNA and kDNA copy numbers. Naive sand flies were spiked with a serial dilution of promastigotes to make a standard curve.
Results: The qPCR targeting SL RNA performed well on infected sand fly samples, despite preservation and extraction under presumed unfavorable conditions for downstream RNA detection. Nucleic acid extraction by a crude extraction buffer combined with a precipitation step was highly compatible with downstream SL RNA and kDNA detection. Copy numbers of kDNA were found to be identical in culture-derived parasites and promastigotes isolated from sand fly midguts. SL RNA levels were slightly lower in sand fly promastigotes (ΔCq 1.7). The theoretical limit of detection and quantification of the SL RNA qPCR respectively reached down to 10 and 10 parasite equivalents. SL RNA detection in stored hyrax samples was less efficient with some false-negative assay results, most likely due to the long-term tissue storage in absence of RNA stabilizing reagents.
Conclusions: This study shows that a crude extraction method in combination with the SL RNA qPCR assay is suitable for the detection and quantification of Leishmania in sand flies. The assay is inexpensive, sensitive and pan-Leishmania specific, and accordingly an excellent assay for high-throughput screening in entomological research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7268266 | PMC |
http://dx.doi.org/10.1186/s13071-020-04141-y | DOI Listing |
Trop Med Infect Dis
December 2024
Evolutionary Ecology Group, Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium.
is a vector of , the causative agent of cutaneous leishmaniasis. This study assessed the abundance and distribution of in different habitats and human houses situated at varying distances from hyrax (reservoir host) dwellings, in Wolaita Zone, southern Ethiopia. Sandflies were collected from January 2020 to December 2021 using CDC light traps, sticky paper traps, and locally made emergence traps.
View Article and Find Full Text PDFPLoS Negl Trop Dis
December 2024
Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement Travail), UMR S 1085, Rennes, France.
Background: Leishmaniasis, caused by Leishmania protozoan parasites transmitted by Phlebotomine sand flies, is a significant public health concern in the Mediterranean basin. Effective monitoring of Leishmania-infected sand flies requires standardized tools for comparing their distribution and infection prevalence. Consistent quantitative real-time PCR (qPCR) parameters and efficient DNA extraction protocols are crucial for reliable results over time and across regions.
View Article and Find Full Text PDFParasit Vectors
December 2024
Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.
Background: Leishmaniasis is a group of neglected vector-borne diseases transmitted by phlebotomine sand flies. Leishmania parasites must overcome various defenses in the sand fly midgut, including the insects's immune response. Insect immunity is regulated by the ecdysone hormone, which binds to its nuclear receptor (EcR) and activates the transcription of genes involved in insect immunity.
View Article and Find Full Text PDFZookeys
December 2024
Department of Entomology, National Museum, Cirkusová 1740, CZ - 193 00, Praha 9 - Horní Počernice, Czech Republic National Museum Praha Czech Republic.
A fundamental prerequisite for understanding and protecting biodiversity is the construction of a high-quality faunal database. The primary objective of this study was to address knowledge gaps in the biodiversity of the family Psychodidae in Estonia. Faunistic data on 45 species of moth flies (Diptera: Psychodidae) from Estonia are presented, including 30 new country-records.
View Article and Find Full Text PDFParasit Vectors
December 2024
Center of Excellence in Vector Biology and Vector-Borne Diseases, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
Background: Leishmaniasis is an emerging vector-borne disease that occurs in Thailand. Although Leishmania (Mundinia) parasites, the causative agents of the disease have been identified, the vectors of the disease remain unidentified. In the present study, we collected sand flies from three caves located in endemic areas of leishmaniasis, including Lampang and Chiang Rai in northern Thailand, and Songkhla in southern Thailand.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!