33% hydrogen peroxide as a Neoadjuvant treatment in the surgical excision of non-melanoma skin cancers: a case series.

J Otolaryngol Head Neck Surg

Department of Otolaryngology - Head and Neck Surgery, London Health Sciences Centre, Victoria Hospital, University of Western Ontario, 800 Commissioners Road E, London, ON, N6A 5W9, Canada.

Published: June 2020

Background: Hydrogen peroxide (HO) is a product of respiration in mitochondria and an important oxidizing agent in biological systems. Previous investigations have shown the efficacy of HO in treating skin conditions such as seborrheic keratosis and actinic keratosis. In an area like the face, reconstruction of excision defects and ultimately aesthetic outcomes are of utmost importance. Hydrogen peroxide may represent a simple yet effective method at shrinking non-melanoma skin cancers (NMSC) of the head and neck before they are excised.

Methods: Eleven consecutive patients presenting to our cutaneous malignancy clinic had their skin lesions evaluated by the senior author for participation in the study. Lesion length and width was measured. Hydrogen peroxide formulated at a concentration of 33% was rubbed into the lesion until blanching was observed. Lesions were re-measured at follow up. Excisional biopsy was then performed and histopathological diagnosis was obtained. Statistical analyses compared pre- and post-treatment lesion dimensions.

Results: Seventeen biopsy-proven NMSC lesions were included in this investigation. Statistically significant reductions in the length (p < 0.001) and width (p < 0.001) were observed with HO treatment. For some lesions, HO was the sole treatment required, with post-treatment biopsy demonstrating no evidence of malignancy. Patients endured minimal discomfort during treatment and no long-term side effects were observed. Follow up at 6 months revealed no recurrences.

Conclusions: We have demonstrated a significant reduction in the size of multiple lesions after application of 33% hydrogen peroxide, simplifying definitive excision and reconstruction. Hydrogen peroxide demonstrated an ability to successfully treat non-melanoma skin cancers as well.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7268291PMC
http://dx.doi.org/10.1186/s40463-020-00433-6DOI Listing

Publication Analysis

Top Keywords

hydrogen peroxide
16
non-melanoma skin
8
skin cancers
8
33% hydrogen
4
peroxide
4
peroxide neoadjuvant
4
neoadjuvant treatment
4
treatment surgical
4
surgical excision
4
excision non-melanoma
4

Similar Publications

Nanoscale particles-induced mitigation of tannery wastewater chromium stress in rice: Implications for plant performance and human health risk assessment.

Environ Pollut

December 2024

School of Public Administration, Hohai University, Nanjing 211000, China; Observation Research Station of Land Ecology and Land Use in the Yangtze River Delta, Ministry of Natural Resources, Nanjing 210009, China. Electronic address:

Due to the rapid increase in industrial and urban areas, environmental pollution is increasing worldwide, which is causing unwanted changes in air, water, and soil at biological, physical, as well as chemical levels that ultimately causing the negative effects in living things because of toxic level of chromium (Cr). However, nanotechnology is capturing great interest worldwide due to their stirring applications in various fields. For this purpose, a pot experiment was conducted to examine plant growth and exo-physiology in rice (Oryza sativa L.

View Article and Find Full Text PDF

TPD-seq: A high throughput RNA-seq method to derive transcriptomic points of departure from cell lines.

Toxicol In Vitro

December 2024

Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada. Electronic address:

There is growing scientific and regulatory interest in transcriptomic points of departure (tPOD) values from high-throughput in vitro experiments. To further help democratize tPOD research, here we outline 'TPD-seq' which links microplate-based exposure methods involving cell lines for human (Caco-2, Hep G2) and environmental (rainbow trout RTgill-W1) health, with a commercially available RNA-seq kit, with a cloud-based bioinformatics tool (ExpressAnalyst.ca).

View Article and Find Full Text PDF

Co-integration of laccase and xylanase from Bacillus pumilus into mini-cellulosome facilitates softwood sulfite pulp biobleaching and reduces hydrogen peroxide consumption.

Int J Biol Macromol

December 2024

State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; School of Life Science, Hubei University, Wuhan 430062, PR China. Electronic address:

Biobleaching is an eco-friendly strategy that can reduce costs and pollution in the pulp and paper industry. Herein, an effective biobleaching approach was proposed using a novel multi-enzyme complex. The multi-enzyme complex was constructed based on mini-cellulosome scaffolding protein integrated with laccase (BpLac) and xylanase (BpXyn) from Bacillus pumilus.

View Article and Find Full Text PDF

Intractable infected wound caused by drug-resistant bacteria remains a severe healthcare problem. Reactive oxygen species (ROS)-based nanocatalytic therapy (ROS-NT) is harnessed to combat drug-resistant bacterial infection. However, it can also cause immune imbalance and excessive inflammatory responses, postponing subsequent wound healing process.

View Article and Find Full Text PDF

Development of a reliable tool to detect hydrogen peroxide (HO) and rutin in food-derived products and bioactive flavonoids is essential for food safety. Nevertheless, food/drug-based real samples are complex matrices that affect the sensor's specificity and sensitivity. For this purpose, we developed a simple electrochemical detection platform using covalent organic framework‑silver nanoparticles (COF-AgNPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!