Background: Deficits in working memory tasks have been widely documented in Attention Deficit Hyperactivity Disorder (ADHD) studies. The aim of this study is to evaluate the effects of working memory load in impulsivity during decision-making processes. A delayed discounting (DD) paradigm was used, comparing children with ADHD and age-matched controls.
Method: Thirty-two children equally divided between typically developing and ADHD, from 8 to 10 years of age were assigned to sessions of a dual-task paradigm. In the primary task the child has to choose between two different amounts of money at different time delays, while in the secondary task the child has to repeat a random series of digits with different lengths. The experiment was conducted in a school setting.
Results: Compared to peers with typical development, delayed discounting was significantly stronger in children with ADHD and discounting rates increased in both groups for heavier memory loads. Furthermore, the memory load impact on frequency of immediate rewards was stronger in children with ADHD compared to typically developing children.
Discussion: Results are discussed in terms of the relation between working memory load and decision-making processes, their impact on impulsive behaviour in ADHD and the need for future research to understand possible neurocognitive correlates and use that information to develop better inclusive policies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7268601 | PMC |
http://dx.doi.org/10.1186/s12888-020-02677-y | DOI Listing |
PLoS One
January 2025
Department of Psychiatry, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China.
Background: Despite transcranial direct current stimulation (tDCS) has demonstrated encouraging potential for modulating the circadian rhythm, little is known about how well and sustainably tDCS might improve the subjective sleep quality in older adults. This study sought to determine how tDCS affected sleep quality and cognition, as well as how well pre-treatment sleep quality predicted tDCS effects on domain-specific cognitive functions in patients with mild neurocognitive disorder due to Alzheimer's disease (NCD-AD).
Methods: This clinical trial aimed to compare the effectiveness of tDCS and cognitive training in mild NCD-AD patients (n = 201).
J Glaucoma
January 2025
Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India.
Prcis: Cognitive impairment in multiple domains was observed in primary open angle glaucoma patients as compared to age and gender matched healthy controls.
Objective: Evaluation of cognitive impairment in individuals with Primary Open Angle Glaucoma (POAG).
Methods: In this case-control study, individuals with POAG (cases, n=70) were compared with age- and sex-matched healthy individuals (controls, n=70) using detailed ophthalmological evaluation, cognitive assessment and serum cortisol level.
JAMA Netw Open
January 2025
Laboratory of NeuroImaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland.
Importance: Cannabis use has increased globally, but its effects on brain function are not fully known, highlighting the need to better determine recent and long-term brain activation outcomes of cannabis use.
Objective: To examine the association of lifetime history of heavy cannabis use and recent cannabis use with brain activation across a range of brain functions in a large sample of young adults in the US.
Design, Setting, And Participants: This cross-sectional study used data (2017 release) from the Human Connectome Project (collected between August 2012 and 2015).
J Vis
January 2025
Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.
Previous research has shown that, when multiple similar items are maintained in working memory, recall precision declines. Less is known about how heterogeneous sets of items across different features within and between modalities impact recall precision. In two experiments, we investigated modality (Experiment 1, n = 79) and feature-specific (Experiment 2, n = 154) load effects on working memory performance.
View Article and Find Full Text PDFSci Immunol
January 2025
Department of Immunology, Harvard Medical School; Boston, MA, USA.
Our understanding of the meningeal immune system has recently burgeoned, particularly regarding how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains limited. This study highlights the heterogeneous, polyfunctional regulatory T cell (T) compartment in the meninges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!