We have developed a trapped ion system for producing two-dimensional (2D) ion crystals for applications in scalable quantum computing, quantum simulations, and 2D crystal phase transition and defect studies. The trap is a modification of a Paul trap with its ring electrode flattened and split into eight identical sectors and its two endcap electrodes shaped as truncated hollow cones for laser and imaging optics access. All ten trap electrodes can be independently DC-biased to create various aspect ratio trap geometries. We trap and Doppler cool 2D crystals of up to 30 Ba ions and demonstrate the tunability of the trapping potential both in the plane of the crystal and in the transverse direction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5145102 | DOI Listing |
Phys Rev Lett
November 2024
Laboratoire De Physique de l'École Normale Supérieure, École Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Université Paris Cité, 24 rue Lhomond, 75231 Paris Cedex 05, France.
Nuclear magnetic resonance (NMR) spans diverse fields from biology to quantum science. Employing NMR on a floating object could unveil novel possibilities beyond conventional operational paradigms. Here, we observe NMR within a levitating microdiamond using the nuclear spins of nitrogen-14 atoms.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266041, China.
This study investigates the application of trioctylphosphine oxide (TOPO) and triphenylphosphine oxide (TPPO) as an additive to enhance the performance of all-inorganic CsPbBr perovskite solar cells (PSCs). The addition of TOPO and TPPO passivates surface defects, increases grain size, and reduces surface trap states, leading to better light absorption and accelerated carrier transport. These modifications lead to an optimized energy level distribution, resulting in a significant increase in power conversion efficiency from 5.
View Article and Find Full Text PDFEcology
November 2024
Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, Villiers en Bois, France.
The photoluminescence properties of quantum dots (QDs) are often enhanced by eliminating surface trap states through chemical methods. Alternatively, a physical approach is presented here for improving photoluminescence purity in QDs by employing frequency-specific plasmon resonance coupling. Emitter-bound plasmonic hybrids are designed by electrostatically binding negatively charged QDs in water to positively charged gold nanoparticles having a thin polymer coating.
View Article and Find Full Text PDFChemphyschem
November 2024
Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405, Orsay, France.
A series of Methionine (Met) derivatives, where either the amino group and/or the carboxylic acid group is blocked by acetyl and/or methyl ester functionalities, has been investigated by Collision Induced Dissociation-tandem mass spectrometry (CID-MS) and Infrared Multiple Photon Dissociation (IRMPD) spectroscopy. The CID-MS experiments were performed using a Fourier-transform ion-cyclotron-resonance (FT-ICR) mass spectrometer equipped with an electrospray ionization (ESI) source. The IRMPD spectra were recorded employing a Paul type ion-trap coupled with the free-electron laser (FEL) FELIX in the fingerprint region from 600 to 2000 cm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!