Lowering the operating temperature of solid oxide fuel cells (SOFCs) is crucial to make this technology commercially viable. In this context, the electrode efficiency at low temperatures could be greatly enhanced by microstructural design at the nanoscale. This work describes alternative microstructural approaches to improve the electrochemical efficiency of the BaCoFeZrYO (BCFZY) cathode. Different electrodes architectures are prepared in a single step by a cost-effective and scalable spray-pyrolysis deposition method. The microstructure and electrochemical efficiency are compared with those fabricated from ceramic powders and screen-printing technique. A complete structural, morphological and electrochemical characterization of the electrodes is carried out. Reduced values of area specific resistance are achieved for the nanostructured cathodes, i.e., 0.067 Ω·cm at 600 °C, compared to 0.520 Ω·cm for the same cathode obtained by screen-printing. An anode supported cell with nanostructured BCFZY cathode generates a peak power density of 1 W·cm at 600 °C.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352881 | PMC |
http://dx.doi.org/10.3390/nano10061055 | DOI Listing |
Adv Mater
January 2025
Materials Science and Engineering Program, Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA.
Anode-free all solid-state batteries (AF-ASSBs) employ "empty" current collector with three active interfaces that determine electrochemical stability; lithium metal - Solid electrolyte (SE) interphase (SEI-1), lithium - current collector interface, and collector - SE interphase (SEI-2). Argyrodite LiPSCl (LPSCl) solid electrolyte (SE) displays SEI-2 containing copper sulfides, formed even at open circuit. Bilayer of 140 nm magnesium/30 nm tungsten (Mg/W-Cu) controls the three interfaces and allows for state-of-the-art electrochemical performance in half-cells and fullcells.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
Organic anode materials have garnered attention for use in rechargeable Li-ion batteries (LIBs) owing to their lightweight, cost-effectiveness, and tunable properties. However, challenges such as high electrolyte solubility and limited conductivity, restrict their use in full-cell LIBs. Here, we report the use of highly crystalline Cl-substituted contorted hexabenzocoronene (Cl-cHBC) as an efficient organic anode for full-cell LIBs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China.
Proton conducting electrochemical cells (PCECs) are efficient and clean intermediate-temperature energy conversion devices. The proton concentration across the PCECs is often nonuniform, and characterizing the distribution of proton concentration can help to locate the position of rate-limiting reactions. However, the determination of the local proton concentration under operating conditions remains challenging.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shanghai Advanced Research Institute Chinese Academy of Sciences: Chinese Academy of Sciences Shanghai Advanced Research Institute, Low-Carbon Conversion Science and Engineering Cente, 100 Haike Road, 201203, Shanghai, CHINA.
Renewable energy-driven electrochemical CO2 reduction has emerged as a promising technology for a sustainable future. However, achieving efficient production of storable liquid fuels at ampere-level current densities remains a significant hurdle in the large-scale implementation of CO2 electroreduction. Here we report a novel catalytic electrode comprising chlorine-doped SnO2 nanoflowers arrayed on the exterior of three-dimensional nickel hollow fibers.
View Article and Find Full Text PDFBioprocess Biosyst Eng
January 2025
Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Batu Pahat, 86400, Parit Raja, Johor, Malaysia.
The ubiquitous presence of pharmaceuticals and personal care products (PPCPs) in the environment has become a significant concern due to their persistence, bioaccumulation potential in biota, and diverse implications for human health and wildlife. This review provides an overview of the current state-of-the-art in environmental bioremediation techniques for reducing pharmaceutical residues, with a special emphasis on microbial physiological aspects. Numerous microorganisms, including algae, bacteria or fungi, can biodegrade various pharmaceutical compounds such as antibiotics, analgesics and beta-blockers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!