Synthesis and Self-Assembly of Poly(-Vinylcaprolactam)--Poly(ε-Caprolactone) Block Copolymers via the Combination of RAFT/MADIX and Ring-Opening Polymerizations.

Polymers (Basel)

Laboratory of Polymers, Department of Chemical Engineering, Engineering School of Lorena, University of São Paulo, EEL-USP, Estrada Municipal do Campinho, s/n, P.O. Box 116, Lorena, SP 12602-810, Brazil.

Published: May 2020

Well-defined amphiphilic, biocompatible and partially biodegradable, thermo-responsive poly(-vinylcaprolactam)--poly(ε-caprolactone) (PNVCL--PCL) block copolymers were synthesized by combining reversible addition-fragmentation chain transfer (RAFT) and ring-opening polymerizations (ROP). Poly(-vinylcaprolactam) containing xanthate and hydroxyl end groups (X-PNVCL-OH) was first synthesized by RAFT/macromolecular design by the interchange of xanthates (RAFT/MADIX) polymerization of NVCL mediated by a chain transfer agent containing a hydroxyl function. The xanthate-end group was then removed from PNVCL by a radical-induced process. Finally, the hydroxyl end-capped PNVCL homopolymer was used as a macroinitiator in the ROP of ε-caprolactone (ε-CL) to obtain PNVCL--PCL block copolymers. These (co)polymers were characterized by Size Exclusion Chromatography (SEC), Fourier-Transform Infrared FTIR), Proton Nuclear Magnetic Resonance spectroscopy (H NMR), UV-vis and Differential Scanning Calorimetry (DSC) measurements. The critical micelle concentration (CMC) of the block copolymers in aqueous solution measured by the fluorescence probe technique decreased with increasing the length of the hydrophobic block. However, dynamic light scattering (DLS) demonstrated that the size of the micelles increased with increasing the proportion of hydrophobic segments. The morphology observed by cryo-TEM demonstrated that the micelles have a pointed-oval-shape. UV-vis and DLS analyses showed that these block copolymers have a temperature-responsive behavior with a lower critical solution temperature (LCST) that could be tuned by varying the block copolymer composition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7362203PMC
http://dx.doi.org/10.3390/polym12061252DOI Listing

Publication Analysis

Top Keywords

block copolymers
20
ring-opening polymerizations
8
pnvcl--pcl block
8
chain transfer
8
block
7
copolymers
6
synthesis self-assembly
4
self-assembly poly-vinylcaprolactam--polyε-caprolactone
4
poly-vinylcaprolactam--polyε-caprolactone block
4
copolymers combination
4

Similar Publications

A Regiospecific Co-Assembly Method to Functionalize Ordered Mesoporous Metal Oxides with Customizable Noble Metal Nanocrystals.

ACS Cent Sci

December 2024

Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.

An efficient regiospecific co-assembly (RSCA) strategy is developed for general synthesis of mesoporous metal oxides with pore walls precisely decorated by highly dispersed noble metal nanocrystals with customized parameters (diameter and composition). It features the rational utilization of the specific interactions between hydrophilic molecular precursors, hydrophobic noble metal nanocrystals, and amphiphilic block copolymers, to achieve regiospecific co-assembly as confirmed by molecular dynamics simulations. Through this RSCA strategy, we achieved a controllable synthesis of a variety of functional mesoporous metal oxide composites (e.

View Article and Find Full Text PDF

This study investigates the effects of homopolymer additives and kinetic traps on the self-assembly of poly(ethylene glycol)-b-poly(lactide) (PEG-PLA) block copolymer (BCP) nanostructures in aqueous environments. By using non-adsorbing PEG homopolymers to kinetically trap PEG-PLA nanostructures, we demonstrate that varying the concentration and molecular weight of the added PEG induces a reversible micelle-to-vesicle transition. This transition is primarily driven by changes in the molecular geometry of the PEG-PLA BCPs due to excluded volume screening effects.

View Article and Find Full Text PDF

X-ray-Triggered Activation of Polyprodrugs for Synergistic Radiochemotherapy.

Biomacromolecules

December 2024

School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.

X-ray-induced photodynamic therapy (XPDT) can penetrate deeply into the tumor tissues to overcome the disadvantage of conventional PDT. However, the therapeutic efficacy of XPDT in cancer therapy is still restricted due to the insufficient reactive oxygen species (ROS) generation at a relatively low irradiation dosage. Herein, we present the tumor pH and ROS-responsive polyprodrug micelles to load the X-ray photosensitizer verteporfin (VP) as an ROS production enhancer.

View Article and Find Full Text PDF

Carbon-supported single-atom catalysts exhibit exceptional properties in acidic CO reduction. However, traditional carbon supports fall short in building high-site-utilization and CO-rich interfacial environments, and the structural evolution of single-atom metals and catalytic mechanisms under realistic conditions remain ambiguous. Herein, an interconnected mesoporous carbon nanofiber and carbon nanosheet network (IPCF@CS) is reported, derived from microphase-separated block copolymer, to improve catalytic efficiency of isolated Ni.

View Article and Find Full Text PDF

Submicron particulate matter (PM) can penetrate deeply into human tissue, posing a serious threat to human health. However, the electrostatic charge of commercial respirators is easily dissipated, making it difficult to maintain long-term filtration. Herein, a hierarchically porous filter based on nanofibers with accessible porosity and particulate-attractive surfaces, achieving significant filtration performance is developed through polarity-driven interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!