The emergence of deep-learning methods in different computer vision tasks has proved to offer increased detection, recognition or segmentation accuracy when large annotated image datasets are available. In the case of medical image processing and computer-aided diagnosis within ultrasound images, where the amount of available annotated data is smaller, a natural question arises: are deep-learning methods better than conventional machine-learning methods? How do the conventional machine-learning methods behave in comparison with deep-learning methods on the same dataset? Based on the study of various deep-learning architectures, a lightweight multi-resolution Convolutional Neural Network (CNN) architecture is proposed. It is suitable for differentiating, within ultrasound images, between the Hepatocellular Carcinoma (HCC), respectively the cirrhotic parenchyma (PAR) on which HCC had evolved. The proposed deep-learning model is compared with other CNN architectures that have been adapted by transfer learning for the ultrasound binary classification task, but also with conventional machine-learning (ML) solutions trained on textural features. The achieved results show that the deep-learning approach overcomes classical machine-learning solutions, by providing a higher classification performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7309124 | PMC |
http://dx.doi.org/10.3390/s20113085 | DOI Listing |
J Chem Phys
January 2025
Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA.
Bottom-up coarse-grained (CG) modeling is an effective means of bypassing the limited spatiotemporal scales of conventional atomistic molecular dynamics while retaining essential information from the atomistic model. A central challenge in CG modeling is the trade-off between accuracy and efficiency, as the inclusion of often pivotal many-body interaction terms in the CG force-field renders simulation markedly slower than simple pairwise models. The Ultra Coarse-Graining (UCG) method incorporates many-body terms through discrete internal state variables that modulate the CG force-field according to, e.
View Article and Find Full Text PDFCureus
December 2024
Internal Medicine, Belgaum Institute of Medical Science, Belgaum, IND.
Several studies explored the application of artificial intelligence (AI) in magnetic resonance imaging (MRI)-based rectal cancer (RC) staging, but a comprehensive evaluation remains lacking. This systematic review aims to review the performance of AI models in MRI-based RC staging. PubMed and Embase were searched from the inception of the database till October 2024 without any language and year restrictions.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu, China.
Background: Ultrasound imaging is pivotal for point of care non-invasive diagnosis of musculoskeletal (MSK) injuries. Notably, MSK ultrasound demands a higher level of operator expertise compared to general ultrasound procedures, necessitating thorough checks on image quality and precise categorization of each image. This need for skilled assessment highlights the importance of developing supportive tools for quality control and categorization in clinical settings.
View Article and Find Full Text PDFHum Brain Mapp
February 2025
Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea.
Magnetic susceptibility source separation (χ-separation), an advanced quantitative susceptibility mapping (QSM) method, enables the separate estimation of paramagnetic and diamagnetic susceptibility source distributions in the brain. Similar to QSM, it requires solving the ill-conditioned problem of dipole inversion, suffering from so-called streaking artifacts. Additionally, the method utilizes reversible transverse relaxation ( ) to complement frequency shift information for estimating susceptibility source concentrations, requiring time-consuming data acquisition for (e.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
Background: Functional Gastrointestinal Disorders (FGIDs) can pose a great burden on affected children, their families, and the healthcare system. Due to the lack of knowledge about the precise pathophysiology of FGIDs, a proper identification of children at risk to develop FGIDs has never been attempted. The research aims to identify early-life risk factors for FGIDs such as infantile colic, regurgitation, and functional constipation, within the first year of life.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!