[Spectral and thermal characterization of cephalosporins. I. Cefadroxil and cefalexin].

Farmaco Sci

Laboratoire de Physique Industrielle Pharmaceutique - Faculté de Pharmacie, Montpellier, France.

Published: December 1988

AI Article Synopsis

  • Cefadroxil and cefalexin were analyzed using thermal and spectral methods to understand their properties.
  • An infrared and Raman spectroscopic study was conducted to examine the molecular structure of these drugs.
  • The aim was to link the structural characteristics to their effectiveness in fighting bacterial infections.

Article Abstract

Cefadroxil and cefalexine were characterized by thermal and spectral analysis. A vibrational study by infrared and Raman spectroscopies was made to connect the structural data with the antibacterial activity.

Download full-text PDF

Source

Publication Analysis

Top Keywords

[spectral thermal
4
thermal characterization
4
characterization cephalosporins
4
cephalosporins cefadroxil
4
cefadroxil cefalexin]
4
cefalexin] cefadroxil
4
cefadroxil cefalexine
4
cefalexine characterized
4
characterized thermal
4
thermal spectral
4

Similar Publications

Combination of plasma acoustic emission signal and laser-induced breakdown spectroscopy for accurate classification of steel.

Anal Chim Acta

January 2025

Key Laboratory of High Performance Manufacturing for Aero Engine (MIIT), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China. Electronic address:

Background: Fast and accurate classification of steel can effectively improve industrial production efficiency. In recent years, the use of laser-induced breakdown spectroscopy (LIBS) in conjunction with other techniques for material classification has been developing. Plasma Acoustic Emission Signal (PAES) is a type of modal information separate from spectra that is detected using LIBS, and it can reflect some of the sample's physicochemical information.

View Article and Find Full Text PDF

Gradient Porous and Carbon Black-Integrated Cellulose Acetate Aerogel for Scalable Radiative Cooling.

Small

January 2025

School of Mechanical Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.

Passive temperature controls like passive daytime radiative cooling (PDRC)-heating (PDRH), and thermal insulation are essential to meet the growing demand for energy-efficient thermal solutions. When combined with advanced functions like electromagnetic interference shielding, these technologies can significantly enhance scalability. However, existing approaches using single thin films or uniform porous materials face inherent limitations in optimizing versatile functions, while lightweight, insulating aerogels can extend their multifunctionality by manipulating pores and fillers.

View Article and Find Full Text PDF

Multi-modal systems extract information about the environment using specialized sensors that are optimized based on the wavelength of the phenomenology and material interactions. To maximize the entropy, complementary systems operating in regions of non-overlapping wavelengths are optimal. VIS-IR (Visible-Infrared) systems have been at the forefront of multi-modal fusion research and are used extensively to represent information in all-day all-weather applications.

View Article and Find Full Text PDF

Tungsten oxide (WO) electrochromic devices are obtaining increasing interest due to their color change and thermal regulation. However, most previous work focuses on the absorption or transmission spectra of materials, rather than the optical parameters evolution in full spectrum in the electrochromic processes. Herein, we developed a systematic protocol of ex situ methods to clarify the evolutions of subtle structure changes, Raman vibration modes, and optical parameters of WO thin films in electrochromic processes as stimulated by dosage-dependent Li insertion.

View Article and Find Full Text PDF

Fine Control of Optical Properties of NbO Film by Thermal Treatment.

Micromachines (Basel)

November 2024

Shenyang Academy of Instrumentation Science, Shenyang 110043, China.

Thermal treatment is a common method to improve the properties of optical thin films, but improper thermal treatment processing will result in the degradation of the optical properties of the optical thin film. The thermal stability of niobium oxide (NbO) thin films prepared by magnetron sputtering was systematically studied by analyzing the roughness and morphology of the film under different thermal treatment processes. The results show that the amorphous stability of the NbO thin film can be maintained up to 400 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!