Three-dimensional (3D) microstructures have been exploited in various applications of microfluidic devices. Multilevel structures in micromixers are among the essential structures in microfluidic devices that exploit 3D microstructures for different tasks. The efficiency of the micromixing process is thus crucial, as it affects the overall performance of a microfluidic device. Microstructures are currently fabricated by less effective techniques due to a slow point-to-point and layer-by-layer pattern exposure by using sophisticated and expensive equipment. In this work, a grayscale photolithography technique is proposed with the capability of simultaneous control on lateral and vertical dimensions of microstructures in a single mask implementation. Negative photoresist SU8 is used for mould realisation with structural height ranging from 163.8 to 1108.7 µm at grayscale concentration between 60% to 98%, depending on the UV exposure time. This technique is exploited in passive micromixers fabrication with multilevel structures to study the mixing performance. Based on optical absorbance analysis, it is observed that 3D serpentine structure gives the best mixing performance among other types of micromixers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345853PMC
http://dx.doi.org/10.3390/mi11060548DOI Listing

Publication Analysis

Top Keywords

grayscale photolithography
8
photolithography technique
8
microfluidic devices
8
multilevel structures
8
mixing performance
8
implementation single
4
single emulsion
4
emulsion mask
4
mask three-dimensional
4
three-dimensional microstructure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!