Chromosomal microdeletion syndromes present with a wide spectrum of clinical phenotypes that depend on the size and gene content of the affected region. In a healthy carrier, epigenetic mechanisms may compensate for the same microdeletion, which may segregate through several generations without any clinical symptoms until the epigenetic modifications no longer function. We report 2 novel cases of Xq24 microdeletions inherited from mothers with extremely skewed X-chromosome inactivation (sXCI). The first case is a boy presenting with X-linked mental retardation, Nascimento type, due to a 168-kb Xq24 microdeletion involving 5 genes (CXorf56, UBE2A, NKRF, SEPT6, and MIR766) inherited from a healthy mother and grandmother with sXCI. In the second family, the presence of a 239-kb Xq24 microdeletion involving 3 additional genes (SLC25A43, SLC25A5-AS1, and SLC25A5) was detected in a woman with sXCI and a history of recurrent pregnancy loss with a maternal family history without reproductive wastages or products of conception. These cases provide evidence that women with an Xq24 microdeletion and sXCI may be at risk for having a child with intellectual disability or for experiencing a pregnancy loss due to the ontogenetic pleiotropy of a chromosomal microdeletion and its incomplete penetrance modified by sXCI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000508050 | DOI Listing |
Genes (Basel)
July 2023
Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 32000, Israel.
Danon disease is a rare x-linked dominant multisystemic disorder with a clinical triad of severe cardiomyopathy, skeletal myopathy, and intellectual disability. It is caused by defects in the lysosome-associated membrane protein-2 () gene. Numerous different mutations in the protein have been described.
View Article and Find Full Text PDFCytogenet Genome Res
October 2022
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation.
Skewed X-chromosome inactivation (sXCI) can be a marker of lethal genetic variants on the X chromosome in a woman since sXCI modifies the pathological phenotype. The aim of this study was to search for CNVs in women with miscarriages and sXCI. XCI was assayed using the classical method based on the amplification of highly polymorphic exon 1 of the androgen receptor (AR) gene.
View Article and Find Full Text PDFChromosomal microdeletion syndromes present with a wide spectrum of clinical phenotypes that depend on the size and gene content of the affected region. In a healthy carrier, epigenetic mechanisms may compensate for the same microdeletion, which may segregate through several generations without any clinical symptoms until the epigenetic modifications no longer function. We report 2 novel cases of Xq24 microdeletions inherited from mothers with extremely skewed X-chromosome inactivation (sXCI).
View Article and Find Full Text PDFHum Genet
October 2013
Human Genome Laboratory, VIB Center for the Biology of Disease, Leuven, Belgium.
Loss-of-function mutations in several different neuronal pathways have been related to intellectual disability (ID). Such mutations often are found on the X chromosome in males since they result in functional null alleles. So far, microdeletions at Xq24 reported in males always have been associated with a syndromic form of ID due to the loss of UBE2A.
View Article and Find Full Text PDFMolecular mechanisms underlying aberrant phenotypes in balanced X;autosome translocations are scarcely understood. We report the case of a de novo reciprocal balanced translocation X;2(q23;q33) presenting phenotypic alterations highly suggestive of Incontinentia Pigmenti (IP) syndrome, a genodermatosis with abnormal skin pigmentation and neurological failure, segregating as X-linked dominant disorder. Through molecular studies, we demonstrated that the altered phenotype could not be ascribed to chromosome microdeletions or to XIST-mediated inactivation of Xq24-qter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!