Faradaic effects in electrochemically gated graphene sensors in the presence of redox active molecules.

Nanotechnology

School of Analytical Sciences Adlershof (SALSA), IRIS Adlershof and Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany. Institut für Silizium-Photovoltaik, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany.

Published: October 2020

Field-effect transistors (FETs) based on graphene are promising devices for the direct sensing of a range of analytes in solution. We show here that the presence of redox active molecules in the analyte solution leads to the occurrence of heterogeneous electron transfer with graphene generating a Faradaic current (electron transfer) in a FET configuration resulting in shifts of the Dirac point. Such a shift occurs if the Faradaic current is significantly high, e.g. due to a large graphene area. Furthermore, the redox shift based on the Faradaic current, reminiscent of a doping-like effect, is found to be non-Nernstian and dependent on parameters known from electrode kinetics in potentiodynamic methods, such as the electrode area, the standard potential of the redox probes and the scan rate of the gate voltage modulation. This behavior clearly differentiates this effect from other transduction mechanisms based on electrostatic interactions or molecular charge transfer doping effects, which are usually behind a shift of the Dirac point. These observations suggest that large-area unmodified/pristine graphene in field-effect sensors behaves as a non-polarized electrode in liquid. Strategies for ensuring a polarized interface are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ab98bcDOI Listing

Publication Analysis

Top Keywords

faradaic current
12
presence redox
8
redox active
8
active molecules
8
electron transfer
8
dirac point
8
graphene
5
faradaic
4
faradaic effects
4
effects electrochemically
4

Similar Publications

The upsurging of cost-effective electrocatalysts through the operando electro-oxidation approaches holds great promise for the scalable production of green energy in the pursuit of energy sustainability. This work introduces an operando electro-oxidation reconstitution strategy in producing a smart electrocatalyst, cobalt "oxyhydroxide" derived from a newly designed 2D cobalt(II) metal-organic framework (-) directly grown on nickel foam (NF), . The electrocatalyst, , exhibits an outstanding overpotential of 76 mV for the hydrogen evolution reaction and 336 mV for the oxygen evolution reaction to achieve a current density of 10 mA/cm with remarkable Faradaic efficiencies of 97.

View Article and Find Full Text PDF

Hydrogen production via water-splitting or ammonia electrolysis using transition metal-based electrodes is one of the most cost-effective approaches. Herein, ca. 1-4% of Pt atoms are stuffed into a wolframite-type NiWO lattice to improve the electrocatalytic efficiency.

View Article and Find Full Text PDF

Electrocatalytic reduction of CO (eCORR) into valuable multi-carbon (C) products is an effective strategy for combating climate change and mitigating energy crises. The high-energy density and diverse applications of C products have attracted considerable interest. However, the complexity of the reaction pathways and the high energy barriers to C-C coupling lead to lower selectivity and faradaic efficiency for C products than for C products.

View Article and Find Full Text PDF

This perspective work examines the current advancements in integrated CO capture and electrochemical conversion technologies, comparing the emerging methods of (1) electrochemical reactive capture (eRCC) though amine- and (bi)carbonate-mediated processes and (2) direct (flue gas) adsorptive capture and conversion (ACC) with the conventional approach of sequential carbon capture and conversion (SCCC). We initially identified and discussed a range of cell-level technological bottlenecks inherent to eRCC and ACC including, but not limited to, mass transport limitations of reactive species, limitation of dimerization, impurity effects, inadequate generation of CO to sustain industrially relevant current densities, and catalyst instabilities with respect to some eRCC electrolytes, amongst others. We followed this with stepwise perspectives on whether these are considered intrinsic challenges of the technologies - otherwise recommendations were disclosed where appropriate.

View Article and Find Full Text PDF

Ligand-induced changes in the electrocatalytic activity of atomically precise Au nanoclusters.

Chem Sci

January 2025

School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University Chongqing 401331 China

Atomically precise gold nanoclusters have shown great promise as model electrocatalysts in pivotal electrocatalytic processes such as the hydrogen evolution reaction (HER) and carbon dioxide reduction reaction (CORR). Although the influence of ligands on the electronic properties of these nanoclusters is well acknowledged, the ligand effects on their electrocatalytic performances have been rarely explored. Herein, using [Au(SR)] nanoclusters as a prototype model, we demonstrated the importance of ligand hydrophilicity hydrophobicity in modulating the interface dynamics and electrocatalytic performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!