Background: Intradialytic hypotension (IDH) is commonly occurred and links to higher mortality among patients undergoing hemodialysis (HD). Its early prediction and prevention will dramatically improve the quality of life. However, predicting the occurrence of IDH clinically is not simple. The aims of this study are to develop an intelligent system with capability of predicting blood pressure (BP) during HD, and to further compare different machine learning algorithms for next systolic BP (SBP) prediction.
Methods: This study presented comprehensive comparisons among linear regression model, least absolute shrinkage and selection operator (LASSO), tree-based ensemble machine learning models (random forest [RF] and extreme gradient boosting [XGBoost]), and support vector regression to predict the BP during HD treatment based on 200 and 48 maintenance HD patients containing a total of 7,180 and 2,065 BP records for the training and test dataset, respectively. Ensemble method also was computed to obtain better predictive performance. We compared the developed models based on R, root mean square error (RMSE) and mean absolute error (MAE).
Results: We found that RF (R=0.95, RMSE=6.64, MAE=4.90) and XGBoost (R=1.00, RMSE=1.83, MAE=1.29) had comparable predictive performance on the training dataset. However, RF (R=0.49, RMSE=16.24, MAE=12.14) had more accurate than XGBoost (R=0.41, RMSE=17.65, MAE=13.47) on testing dataset. Among these models, the ensemble method (R=0.50, RMSE=16.01, MAE=11.97) had the best performance on testing dataset for next SBP prediction.
Conclusions: We compared five machine learning and an ensemble method for next SBP prediction. Among all studied algorithms, the RF and the ensemble method have the better predictive performance. The prediction models using ensemble method for intradialytic BP profiling may be able to assist the HD staff or physicians in individualized care and prompt intervention for patients' safety and improve care of HD patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2020.105536 | DOI Listing |
Eur Radiol Exp
January 2025
Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Background: Hemorrhagic transformation (HT) is a complication of reperfusion therapy following acute ischemic stroke (AIS). We aimed to develop and validate a model for predicting HT and its subtypes with poor prognosis-parenchymal hemorrhage (PH), including PH-1 (hematoma within infarcted tissue, occupying < 30%) and PH-2 (hematoma occupying ≥ 30% of the infarcted tissue)-in AIS patients following intravenous thrombolysis (IVT) based on noncontrast computed tomography (NCCT) and clinical data.
Methods: In this six-center retrospective study, clinical and imaging data from 445 consecutive IVT-treated AIS patients were collected (01/2018-06/2023).
Chem Commun (Camb)
January 2025
Department of Chemistry, Quantum Chemistry, TU Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany.
The two key parameters extracted from Mössbauer spectroscopy, isomer shift and quadrupole splitting, have well-known temperature dependencies. While the behavior of the values following a temperature change has long been known, its microscopic origins are less clear. For quantum chemical calculations - formally representing the situation at 0 K - significant discrepancies with the experiment can arise, especially at elevated temperatures.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India.
Estimating rare event kinetics from molecular dynamics simulations is a non-trivial task despite the great advances in enhanced sampling methods. Weighted Ensemble (WE) simulation, a special class of enhanced sampling techniques, offers a way to directly calculate kinetic rate constants from biased trajectories without the need to modify the underlying energy landscape using bias potentials. Conventional WE algorithms use different binning schemes to partition the collective variable (CV) space separating the two metastable states of interest.
View Article and Find Full Text PDFIntroduction: Diagnostic performance of optical coherence tomography (OCT) to detect Alzheimer's disease (AD) and mild cognitive impairment (MCI) remains limited. We aimed to develop a deep-learning algorithm using OCT to detect AD and MCI.
Methods: We performed a cross-sectional study involving 228 Asian participants (173 cases/55 controls) for model development and testing on 68 Asian (52 cases/16 controls) and 85 White (39 cases/46 controls) participants.
Biol Methods Protoc
January 2025
Department of Physics, George Washington University, Washington, DC 20052, United States.
A mixture-of-experts (MoE) approach has been developed to mitigate the poor out-of-distribution (OOD) generalization of deep learning (DL) models for single-sequence-based prediction of RNA secondary structure. The main idea behind this approach is to use DL models for in-distribution (ID) test sequences to leverage their superior ID performances, while relying on physics-based models for OOD sequences to ensure robust predictions. One key ingredient of the pipeline, named MoEFold2D, is automated ID/OOD detection via consensus analysis of an ensemble of DL model predictions without requiring access to training data during inference.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!