MOF-5 has been criticized for its poor water stability, which results in complete damage of its traditional functionality. Therefore, there are very few researches about the further application of hydrolyzed MOF-5 (h-M). However, in this work, the h-M can function as both superior support and semiconductor for photocatalytic reaction after a water-based process. Herein, a rational design of ZnCdS@h-MOF-5 (ZCS@h-M) heterojunction photocatalyst has been synthesized via a hydrothermal method with different mass ratio of ZCS. As demonstrated in the results of SEM and TEM, during the hydrothermal process, MOF-5 exfoliated into two-dimensional small sheets and ZCS nanoparticles embedded into h-M frameworks, which is in favor for the dispersion of ZCS and better interface connection, thus further boosts the migration of photogenerated charge carriers and protect the photocorrosion of ZCS, ultimately improves the photocatalytic hydrogen production. Optimal ZCS content of 10 wt% exhibited a significantly enhanced visible light photocatalytic hydrogen production efficiency of 15.08 mmol h g, which far surpassed bare ZCS at 7.62 times. Furthermore, the ZCS@h-M showed outstanding stability during photocatalytic hydrogen production over a number of cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2020.05.023 | DOI Listing |
J Colloid Interface Sci
January 2025
College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar 161006, PR China. Electronic address:
The establishment of heterojunctions has been demonstrated as an effective method to improve the efficiency of photocatalytic hydrogen production. Conventional heterojunctions usually have random orientation relationships, and heterointerfaces can hinder photogenerated carrier transport due to larger lattice mismatches, thus reducing the photoelectric conversion efficiency. In this study, a novel Te/InO@MXene lattice coherency heterojunction was prepared by leveraging the identical lattice spacing of InO (222) and Te (021) crystal face.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), Xi'an 710049 PR China.
Graphitic carbon nitride (g-CN) has been regarded as highly potential photocatalyst for solar energy utilization. However, the restricted absorption of visible light for pristine g-CN significantly limits the solar-light-driven chemical reaction efficiency. Herein, structurally distorted g-CN nanosheets with awakened n-π* electron transition were successfully synthesized through hexamethylenetetramine (HMTA)-involved supercritical CO (scCO) treatment and following pyrolysis of melamine precursor.
View Article and Find Full Text PDFMolecules
January 2025
Department of Applied Chemistry, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
Herein, a WO@TCN photocatalyst was successfully synthesized using a self-assembly method, which demonstrated effectiveness in degrading organic dyestuffs and photocatalytic evolution of H. The synergistic effect between WO and TCN, along with the porous structure of TCN, facilitated the formation of a heterojunction that promoted the absorption of visible light, accelerated the interfacial charge transfer, and inhibited the recombination of photogenerated electron-hole pairs. This led to excellent photocatalytic performance of 3%WO@TCN in degrading TC and catalyzing H evolution from water splitting under visible-light irradiation.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, China.
Solar-driven photocatalytic water splitting offers a sustainable pathway to produce green hydrogen, yet its practical application encounters several challenges including inefficient photocatalysts, sluggish water oxidation, severe reverse reactions and the necessity of separating produced hydrogen and oxygen gases. Herein, we design and develop a photocatalytic system composed of two separate reaction parts: a hydrogen evolution cell containing halide perovskite photocatalysts (MoSe-loaded CH(NH)PbBrI) and an oxygen evolution cell containing NiFe-layered double hydroxide modified BiVO photocatalysts. These components are bridged by a I/I redox couple to facilitate electron transfer, realizing efficient overall water splitting with a solar-to-hydrogen conversion efficiency of 2.
View Article and Find Full Text PDFJ Environ Sci (China)
July 2025
Shandong Key Laboratory of Environmental Processes and Health, Qingdao Key Laboratory of Marine Pollutant Prevention, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China. Electronic address:
Photocatalytic water splitting is a promising way to produce H, a green and clean energy source. However, efficient H production typically relies on the addition of electron donors, such as alcohols and acids, which are neither environmentally friendly nor cost-effective. Recently, we have witnessed a surge of studies in coupling photocatalytic H evolution with organic pollutant oxidation, which significantly promotes charge separation and improves the overall photocatalytic efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!