Many countries have adopted portable emissions measurement system (PEMS) testing in their latest regulations to measure real-world vehicular emissions. However, its fleetwide implementation is severely limited by the high equipment costs and lengthy setup procedures, posing a need to develop more cost-effective, efficient emission measurement methods, such as mobile chasing tests. We conducted conjoint PEMS-chasing experiments for twelve heavy-duty diesel vehicles (HDDTs) to evaluate the accuracy of mobile measurement results. Two data processing approaches were integrated to automate the calculations of fuel consumption-based emission factors of nitrogen oxides (NO). With a total of 245 plume chasing tests conducted, and then averaged by vehicle and road types, we found that the relative errors of vehicle-specific emission factors using an algorithm developed for this project were within approximately ±20% of the PEMS results for all tested vehicles. Stochastic simulations suggested reasonable results could be obtained using fewer chasing tests per vehicle (e.g., 71% for freeways and 94% for local road, equivalent to two chase tests per vehicle). This study improves the understanding of the accuracy of the mobile chasing method, and provides a practical approach for real-time emission measurements for future scaled-up mobile chasing studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7778828 | PMC |
http://dx.doi.org/10.1016/j.scitotenv.2020.139507 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!