Bioinformatics clustering application for mining of a large set of olive pollen aerobiological data to describe the daily distribution of Olea pollen concentration. The study was performed with hourly pollen concentrations measured during 8 years (2011-2018) in Extremadura (Spain). Olea pollen season by quartiles of the pollen integral in preseason (Q1: 0%-25%), in-season (Q2 and Q3: 25%-75%) and postseason (Q4: 75%-100%). Days with pollen concentrations above 100 grains/m were clustered according to the daily distribution of the concentrations. The factors affecting the prevalence of the different clusters were analyzed: distance to olive groves and the moment during the pollen season and the meteorology. During the season, the highest hourly concentrations during the day where between 12:00 and 14:00, while during the preseason the highest hourly concentrations were detected in the afternoon and evening hours. In the postseason the pollen concentrations were more homogeneously distributed during 9-16 h. The representation shows a well-defined hourly pattern during the season, but a more heterogeneous distribution during the preseason and postseason. The cluster dendrogram shows that all the days could be clustered in 6 groups: most of the clusters shows the daily peaks between 11:00 and 15:00 with a smooth curve (Cluster 1 and 3) or with a strong peak (2 and 5). Days included in cluster 9 shows an earlier peak in the morning (before 9:00). On the other hand, cluster 6 shows a peak in the afternoon, after 15:00. Hourly concentrations show a sharper pattern during the season, with the peak during the hours close to the emission. Out of the season, when pollen is expected to come from farther distances, the hourly peak is located later from the emission time of the trees. Significant factors for predicting the hourly pattern were wind speed and direction and the distance to the olive groves.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.139363 | DOI Listing |
Biol Aujourdhui
January 2025
Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris), Paris, France - Sorbonne Université, 4 place Jussieu, 75005 Paris, France.
The evolutionary success of angiosperms, which make up more than 95 percent of the world's terrestrial flora, is largely based on their interactions with animal pollinators. Indeed, it is estimated that, on average, 87.5 percent of flowering plants are pollinated by animals.
View Article and Find Full Text PDFNat Prod Res
January 2025
Department of Nanotechnology and Advanced Materials, Mersin University, Mersin, Turkey.
Propolis, a natural product with remarkable therapeutic potential, has gained attention for its antimicrobial, antioxidant, and anti-inflammatory properties. In this study, propolis samples from Sarıyaprak, Kovanağzı, and Çemikari in Pervari, Siirt province, were analysed comprehensively. The evaluation included wax composition, DPPH and FRAP assays, total phenolic and flavonoid content, and pollen analysis.
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA.
Pollinators help maintain functional landscapes and are sensitive to floral nutritional quality. Both proteins and lipids influence pollinator foraging, but the role of individual biochemical components in pollen remains unclear. We conducted an experiment comprising common garden plots of six plant species (Asteraceae, Rosaceae, Onagraceae, Boraginaceae, and Plantaginaceae).
View Article and Find Full Text PDFSci Total Environ
January 2025
Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland.
Pollinosis is the most prevalent allergic disorder. Assessing the impact of real-world pollen exposure on symptoms remains challenging due to extensive patient-level efforts required. This study explores the potential of wastewater-based epidemiology (WBE) to investigate the relationship between airborne pollen concentrations and antihistamine residues in wastewater as an indicator of pollinosis symptom treatment at the population-scale.
View Article and Find Full Text PDFBMC Public Health
January 2025
Social Environment and Health Program, Institute for Social Research, University of Michigan, 426 Thompson St., Ann Arbor, MI, 48104, USA.
Introduction: Levels of plant-based aeroallergens are rising as growing seasons lengthen and intensify with anthropogenic climate change. Increased exposure to pollens could increase risk for mortality from respiratory causes, particularly among older adults. We determined short-term, lag associations of four species classes of pollen (ragweed, deciduous trees, grass pollen and evergreen trees) with respiratory mortality (all cause, chronic and infectious related) in Michigan, USA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!