A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Drug delivery to solid tumors with heterogeneous microvascular networks: Novel insights from image-based numerical modeling. | LitMetric

The present study examines chemotherapy by incorporating multi-scale mathematical modeling to predict drug delivery and its effects. This approach leads to a more-realistic physiological tumor model than is possible with previous approaches, as it obtains the capillary network geometry from an image, and also considers the tumor's necrotic core, drug binding, and cellular uptake. Modeling of the fluid flow and drug transport is then performed in the extracellular matrix. The results demonstrate a 10% drop in the fraction of killed cancer cells 69% rather than the 79% reported earlier for a tumor of similar geometry a more-accurate value. This study examines how tumor-related parameters including the necrotic core size and tumor size, and also drug-related parameters drug dosage, binding affinity of drug, and drug degradation can affect the delivery of the drug to solid tumors. Results indicate that concentration of drug are high in the tumor, low in normal tissue, and remarkably low in the necrotic core. Results also offer a treatment of tumors with smaller necrotic core. Tumor size, which implies the tumor progression, has a considerable impact on treatment outcomes, so to be more effective, treatment should be applied at a specific size of tumor. It is demonstrated that binding affinity of drugs to cell-surface receptors and drug dosage have significant impact on treatment efficacy, so they should be regulated based on a balanced quantification between maximum treatment efficacy and minimum side effects. On the other hand, considering the effects of drug degradation in the model has not significant effect on treatment efficacy. The findings of the present study provide insight into the mechanism of drug delivery to solid tumors based on analyzing the effective parameters and modeling how their behavior in the tumor microenvironment affects treatment efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2020.105399DOI Listing

Publication Analysis

Top Keywords

necrotic core
16
treatment efficacy
16
drug
12
drug delivery
12
solid tumors
12
delivery solid
8
study examines
8
tumor
8
size tumor
8
tumor size
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!