Aseptic loosening caused by periprosthetic osteolysis (PPO) is the main reason for the primary artificial joint replacement. Inhibition of inflammatory osteolysis has become the main target of drug therapy for prosthesis loosening. MiR-106b is a newly discovered miRNA that plays an important role in tumour biology, inflammation and the regulation of bone mass. In this study, we analysed the in vivo effect of miR-106b on wear debris-induced PPO. A rat implant loosening model was established. The rats were then administrated a lentivirus-mediated miR-106b inhibitor, miR-106b mimics or an equivalent volume of PBS by tail vein injection. The expression levels of miR-106b were analysed by real-time PCR. Morphological changes in the distal femurs were assessed via micro-CT and histopathological analysis, and cytokine expression levels were examined via immunohistochemical staining and ELISA. The results showed that treatment with the miR-106b inhibitor markedly suppressed the expression of miR-106b in distal femur and alleviated titanium particle-induced osteolysis and bone loss. Moreover, the miR-106b inhibitor decreased TRAP-positive cell numbers and suppressed osteoclast formation, in addition to promoting the activity of osteoblasts and increasing bone formation. MiR-106b inhibition also significantly regulated macrophage polarization and decreased the inflammatory response as compared to the control group. Furthermore, miR-106b inhibition blocked the activation of the PTEN/PI3K/AKT and NF-κB signalling pathways. Our findings indicated that miR-106b inhibition suppresses wear particles-induced osteolysis and bone destruction and thus may serve as a potential therapy for PPO and aseptic loosening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7339204PMC
http://dx.doi.org/10.1111/jcmm.15376DOI Listing

Publication Analysis

Top Keywords

mir-106b inhibition
16
mir-106b
12
mir-106b inhibitor
12
inhibition suppresses
8
bone destruction
8
wear debris-induced
8
periprosthetic osteolysis
8
aseptic loosening
8
expression levels
8
osteolysis bone
8

Similar Publications

Introduction: Type 2 diabetes (T2D) is a chronic condition characterized by high levels of blood glucose resulting from the inefficiency of insulin. This study aims to explore the mechanism of TGFB-induced factor homeobox 1 (TGIF1) in the glycolipid metabolism of mice with T2D.

Research Design And Methods: Mice with T2D were induced by high-fat diet and low-dose streptozotocin (STZ) injection.

View Article and Find Full Text PDF

IFN-treated macrophage-derived exosomes prevents HBV-HCC migration and invasion via regulating miR-106b-3p/PCGF3/PI3K/AKT signaling axis.

Front Cell Infect Microbiol

November 2024

Department of Pulmonary and Critical Care Medicine, Yunnan Provincial Key Laboratory for Clinical Virology, Institute of Basic and Clinical Medicine, The First People's Hospital of Yunnan Province, Kunming, China.

Background: Studies revealed that exosomes from IFN-α-treated liver non-parenchymal cells (IFN-exo) mediate antiviral activity. MiR-106b-3p has been shown to play a paradoxical role in disease progressing from different studies. However, its specific role in HBV-related hepatocellular carcinoma (HBV-HCC) and the underlying mechanism remains unclear.

View Article and Find Full Text PDF

The Association Between Anti-Neoplastic Effects of Curcumin and Urogenital Cancers: A Systematic Review.

Biomed Res Int

October 2024

Department of Nutrition, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.

Curcumin is a polyphenol compound with anticancer effects. We aimed to review the anti-neoplastic effects of curcumin on urogenital cancers, by regulating different microRNA expressions. A systematic search was conducted in Medline (PubMed), Embase, Scopus, and Web of Science up to the end of August 2024.

View Article and Find Full Text PDF
Article Synopsis
  • * A study used PCR analysis to observe how downregulating CK2 affects the levels of specific oncomir clusters (miR-17 ~ 92 and miR-106b ~ 25) in different cancer cell types, including prostate and breast cancers.
  • * Results indicated that reducing CK2 expression or activity significantly lowered the levels of these oncomirs, suggesting a potential link between CK2 and the regulation of these specific microRNAs in cancer cells.
View Article and Find Full Text PDF

Understanding the endogenous mechanism of adaptive response to drug-induced liver injury (arDILI) may discover innovative strategies to manage DILI. To gain mechanistic insight into arDILI, we investigated exosomal miRNAs in the adaptive response to toosendanin-induced liver injury (TILI) of mice. Exosomal miR-106b-5p was identified as a specific regulator of arDILI by comprehensive miRNA profiling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!