The use of carbon monoxide as a direct reducing agent for the deoxygenation of terminal and internal epoxides to the respective olefins is presented. This reaction is homogeneously catalyzed by a carbonyl pincer-iridium(I) complex in combination with a Lewis acid co-catalyst to achieve a pre-activation of the epoxide substrate, as well as the elimination of CO from a γ-2-iridabutyrolactone intermediate. Especially terminal alkyl epoxides react smoothly and without significant isomerization to the internal olefins under CO atmosphere in benzene or toluene at 80-120 °C. Detailed investigations reveal a substrate-dependent change in the mechanism for the epoxide C-O bond activation between an oxidative addition under retention of the configuration and an S 2 reaction that leads to an inversion of the configuration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7496459 | PMC |
http://dx.doi.org/10.1002/chem.202002651 | DOI Listing |
Chemosphere
January 2025
Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504, Patras, Greece. Electronic address:
The goal of the present work is to quantify the performance of ozonation as a method for the in situ remediation of soils polluted at varying degree with different types of hydrocarbons, and assess its applicability, in terms of remediation efficiency, cost factors, and environmental impacts. Ozonation tests are conducted on dry soil beds, for three specific cases: sandy soil contaminated with low, moderate and high concentration of a non-aqueous phase liquid (NAPL) consisting of equal concentrations of n-decane, n-dodecane, and n-hexadecane; sandy soil polluted with diesel fuel; oil-drilling cuttings (ODC). The transient changes of the concentration of the total organic carbon (TOC), total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs), and soluble chemical oxygen demand (SCOD) in soil and carbon dioxide (CO), carbon monoxide (CO), volatile organic compounds (VOCs), and ozone (O) in exhaust gases are recorded.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:
Concentrated animal feeding operation facility in modern livestock industry is pointed out as a point site causing environmental pollution due to massive generation of manure. While livestock manure is conventionally treated through biological processes, composting and anaerobic digestion, these practices pose difficulties in achieving efficient carbon utilization. To address this, this study suggests a pyrolytic valorization of livestock manure, with a focus on enhancing syngas production.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, USA.
Therapeutic drug development for central nervous system injuries, such as traumatic brain injury (TBI), presents significant challenges. TBI results in primary mechanical damage followed by secondary injury, leading to cognitive dysfunction and memory loss. Our recent study demonstrated the potential of carbon monoxide-releasing molecules (CORMs) to improve TBI recovery by enhancing neurogenesis.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
Plants face a range of environmental stresses, such as heat and drought, that significantly reduce their growth, development, and yield. Plants have developed complex signaling networks to regulate physiological processes and improve their ability to withstand stress. The key regulators of plant stress responses include polyamines (PAs) and gaseous signaling molecules (GSM), such as hydrogen sulfide (HS), nitric oxide (NO), methane (CH), carbon monoxide (CO), carbon dioxide (CO), and ethylene (ET).
View Article and Find Full Text PDFMolecules
January 2025
Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 19, 040 01 Košice, Slovakia.
Hemoglobin is an oxygen-transport protein in red blood cells that interacts with multiple ligands, e.g., oxygen, carbon dioxide, carbon monoxide, and nitric oxide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!