Lung cancer has one of the highest mortality rates of malignant neoplasms. Lung adenocarcinoma (LUAD) is one of the most common types of lung cancer. DNA methylation is more stable than gene expression and could be used as a biomarker for early tumor diagnosis. This study is aimed to screen potential DNA methylation signatures to facilitate the diagnosis and prognosis of LUAD and integrate gene expression and DNA methylation data of LUAD to identify functional epigenetic modules. We systematically integrated gene expression and DNA methylation data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), bioinformatic models and algorithms were implemented to identify signatures and functional modules for LUAD. Three promising diagnostic and five potential prognostic signatures for LUAD were screened by rigorous filtration, and our tumor-normal classifier and prognostic model were validated in two separate data sets. Additionally, we identified functional epigenetic modules in the TCGA LUAD dataset and GEO independent validation data set. Interestingly, the MUC1 module was identified in both datasets. The potential biomarkers for the diagnosis and prognosis of LUAD are expected to be further verified in clinical practice to aid in the diagnosis and treatment of LUAD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7299274PMC
http://dx.doi.org/10.1590/1678-4685-GMB-2019-0164DOI Listing

Publication Analysis

Top Keywords

gene expression
20
dna methylation
20
expression dna
12
methylation data
12
functional epigenetic
12
epigenetic modules
12
potential biomarkers
8
lung adenocarcinoma
8
lung cancer
8
luad
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!