Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Galectin-3 (gal-3) plays a crucial role in various cellular events associated to tumor metastasis and progression. In this direction, gal-3 binding core-shell glyconanoparticles based on citrus pectin (CP) have been designed for targeted, trigger-responsive combination drug delivery. Depolymerization via periodate oxidation in heterogeneous medium yielded low-molecular weight dialdehyde oligomers (CPDA) of CP with a gal-3 binding property ( = 160.90 μM). CPDA-based core-shell nanoparticles prepared to enhance the gal-3 binding specificity via a multivalent ligand presentation have shown to reduce homotypic cellular aggregation, tumor cell binding with endothelial cells, and endothelial tube formation, the major steps involved in the progression of cancer. Immune-fluorescence and flow cytometric analysis confirmed significant reduction in gal-3 expression on MDA-MB 231 cancer cells upon incubation with nanoparticles. An on-demand tumor microenvironment-responsive release of drugs at low pH and high concentrations of glucose and glutathione prevailing in tumor milieu was achieved by introducing a cleavable Schiff's base, a boronate ester, and disulfide linkages within the shell of the nanoparticles. Nanoparticles with encapsulated sulindac in the core and doxorubicin (DOX) in the shell demonstrated target specificity and enhanced internalization with synergistic cytotoxic effects with a 30-fold reduction in IC in DOX-resistant, triple-negative MDA-MB 231 breast cancer cells. Nanoparticles were radiolabeled with I radioisotopes with ≥80% efficiency while retaining its gal-3 binding property. Biodistribution studies of radiolabeled placebo nanoparticles and drug-loaded CPDA nanoparticles demonstrated proof of concept of gal-3 targeting seen as preferential accumulation in the gal-3-expressing tissues of the gastric tract. The CPDA core-shell nanoparticles are thus promising platforms for gal-3 targeting and inhibition of gal-3-mediated processes involved in cancer progression with a potential of radiolabeling for in vivo monitoring or delivering therapeutic doses of radiation and on-demand triggered, target-specific drug release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.0c00358 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!