An aerobic dehydrogenation of nitrogen-containing heterocycles catalyzed by Grubbs catalyst is developed. The reaction is applicable to various nitrogen-containing heterocycles. The exceptionally high functional group compatibility of this method was confirmed by the oxidation of an unprotected dihydroindolactam V to indolactam V. Furthermore, by taking advantage of the oxygen-mediated structural change of the Grubbs catalyst, we integrated ring-closing metathesis and subsequent aerobic dehydrogenation to develop the novel assisted-tandem catalysis using molecular oxygen as a chemical trigger. The utility of the assisted-tandem catalysis was demonstrated by the concise synthesis of N-containing fused heteroarenes including a natural antibiotic, pyocyanine.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202001961DOI Listing

Publication Analysis

Top Keywords

aerobic dehydrogenation
12
grubbs catalyst
12
assisted-tandem catalysis
12
n-containing fused
8
fused heteroarenes
8
nitrogen-containing heterocycles
8
dehydrogenation n-heterocycles
4
n-heterocycles grubbs
4
catalyst application
4
application assisted-tandem
4

Similar Publications

An N,N,N-type Cu(Ⅱ) complex-catalyzed desaturation method for converting alcohols, ketones, lactones, and lactams to their α,β-unsaturated carbonyl compounds is reported. The dehydrogenation reaction can be conducted with a green terminal oxidant O2 without requiring strong acid/base or stoichiometric oxidants. The Cu(Ⅱ) complex/TEMPO/O2 system uses a non-noble catalyst, and a green terminal oxidant as well as demonstrates high activity and functional group tolerance.

View Article and Find Full Text PDF

Deciphering the N-substituent effects on biodegradation of sulfonamides: Novel insights revealed from molecular biology and computational chemistry approaches.

Water Res

December 2024

Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China. Electronic address:

Elucidating biodegradation mechanisms and predicting pollutant reactivities are essential for advancing the application of biodegradation engineering to address the challenge of thousands of emerging contaminants. Molecular biology and computational chemistry are powerful tools for this purpose, enabling the investigation of biochemical reactions at both the gene and atomic levels. This study employs the biodegradation of ten sulfonamide antibiotics as a case study to demonstrate the integration of genomics and quantum chemistry approaches in exploring the biodegradation behavior of emerging contaminants.

View Article and Find Full Text PDF

Cascading Pathways Regulate the Biotransformations of Eight Fluorotelomer Acids Performed by Wastewater Microbial Communities.

Environ Sci Technol

December 2024

School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States.

Polyfluoroalkyl substances can be biotransformed in natural or engineered environmental systems to generate perfluoroalkyl acids (PFAAs). Data are needed to support the development of biotransformation pathway prediction tools that simulate biotransformation pathways of polyfluoroalkyl substances in specific environmental systems. The goal of this study was to experimentally evaluate the biotransformation of eight structurally similar fluorotelomer acids to identify biotransformation products and propose biotransformation pathways.

View Article and Find Full Text PDF

Palladium(ii)-catalyzed dehydrogenative coupling of aliphatic olefins would enable an efficient route to (conjugated) dienes, but remains scarcely investigated. Here, 2-hydroxypyridine (2-OH-pyridine) was found to be an effective ligand for Pd(ii) in the activation of vinylic C(sp)-H bonds. While reoxidation of Pd(0) is challenging in many catalytic oxidations, one can avoid in this reaction that the reoxidation becomes rate-limiting, even under ambient O pressure, by working in coordinating solvents.

View Article and Find Full Text PDF

Halogen bonding accelerated aerobic dehydrogenative aromatization for 4-aminoquinoline preparation.

Org Biomol Chem

December 2024

School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China.

This study presents a highly efficient method for 4-aminoquinoline derivative preparation under transition metal-free conditions. The process involves an aerobic oxidative dehydrative coupling of 2,3-dihydroquinolin-4(1)-ones with various amines, including ammonia, resulting in high yields of the desired products. The method is also applicable to substituted 4-aminoquinoline derivative construction through a cyclization/dehydrative coupling cascade process starting from 2'-amino chalcones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!