Objectives: The study objective was to investigate the prevalence and clinical characteristics of phenobarbitone-associated adverse effects in epileptic cats.
Methods: The medical records of two veterinary referral clinics from 2007 to 2017 were searched for cats fulfilling the inclusion criteria of a diagnosis of epilepsy, treatment with phenobarbitone and available follow-up information on the occurrence of adverse effects. Follow-up information was obtained from the medical records of the primary veterinarian and referral institutions and a questionnaire completed by the cats' owners.
Results: Seventy-seven cats met the inclusion criteria. Fifty-eight were affected by idiopathic epilepsy and 19 by structural epilepsy. One or more of the following adverse effects were reported in 47% of the cats: sedation (89%); ataxia (53%); polyphagia (22%); polydipsia (6%); polyuria (6%); and anorexia (6%). Logistic regression analyses revealed significant associations between adverse effect occurrence and both phenobarbitone starting dosage and administration of a second antiepileptic drug (AED). For each 1 mg/kg q12h increment of phenobarbitone, the likelihood of adverse effects increased 3.1 times. When a second AED was used, the likelihood of adverse effects increased 3.2 times. No association was identified between epilepsy aetiology and adverse effect occurrence. An idiosyncratic adverse effect, characterised by severe neutropenia and granulocytic hypoplasia, was diagnosed in one cat. This resolved following phenobarbitone discontinuation.
Conclusions And Relevance: The prevalence of phenobarbitone-associated adverse effects was 47%. Sedation and ataxia were most common. These are type A adverse effects and are predictable from phenobarbitone's known pharmacological properties. In the majority of cases, adverse effects occurred within the first month of treatment and were transient. Idiosyncratic (type B) adverse effects, which were not anticipated given the known properties of the drug, occurred in one cat. Increased phenobarbitone starting dosage and the addition of a second AED were significantly associated with the occurrence of adverse effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10741352 | PMC |
http://dx.doi.org/10.1177/1098612X20924925 | DOI Listing |
N Engl J Med
January 2025
From Médecins Sans Frontières (L.G., F.V.), Sorbonne Université, INSERM Unité 1135, Centre d'Immunologie et des Maladies Infectieuses (L.G.), Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Universitaire Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (L.G.), and Epicentre (M.G., E. Baudin), Paris, and Translational Research on HIV and Endemic and Emerging Infectious Diseases, Montpellier Université de Montpellier, Montpellier, Institut de Recherche pour le Développement, Montpellier, INSERM, Montpellier (M.B.) - all in France; Interactive Development and Research, Singapore (U.K.); McGill University, Epidemiology, Biostatistics, and Occupational Health, Montreal (U.K.); UCSF Center for Tuberculosis (G.E.V., P.N., P.P.J.P.) and the Division of HIV, Infectious Diseases, and Global Medicine (G.E.V.), University of California at San Francisco, San Francisco; the National Scientific Center of Phthisiopulmonology (A.A., E. Berikova) and the Center of Phthisiopulmonology of Almaty Health Department (A.K.), Almaty, and the City Center of Phthisiopulmonology, Astana (Z.D.) - all in Kazakhstan; Médecins Sans Frontières (C.B., I.M.), the Medical Research Council Clinical Trials Unit at University College London (I.M.), and St. George's University of London Institute for Infection and Immunity (S.W.) - all in London; MedStar Health Research Institute, Washington, DC (M.C.); Médecins Sans Frontières, Mumbai (V. Chavan), the Indian Council of Medical Research Headquarters-New Delhi, New Delhi (S. Panda), and the Indian Council of Medical Research-National AIDS Research Institute, Pune (S. Patil) - all in India; the Centre for Infectious Disease Epidemiology and Research (V. Cox) and the Department of Medicine (H. McIlleron), University of Cape Town, and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (S.W.) - both in Cape Town, South Africa; the Institute of Tropical Medicine, Antwerp, Belgium (B. C. J.); Médecins Sans Frontières, Geneva (G.F., N.L.); Médecins Sans Frontières, Yerevan, Armenia (O.K.); the National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia (N.K.); Partners In Health (M.K.) and Jhpiego Lesotho (L.O.) - both in Maseru; Socios En Salud Sucursal Peru (L.L., S.M.-T., J.R., E.S.-G., D.E.V.-V.), Hospital Nacional Sergio E. Bernales, Centro de Investigacion en Enfermedades Neumologicas (E.S.-G.), Hospital Nacional Dos de Mayo (E.T.), Universidad Nacional Mayor de San Marcos (E.T.), and Hospital Nacional Hipólito Unanue (D.E.V.-V.) - all in Lima; Global Health and Social Medicine, Harvard Medical School (L.L., K.J.S., M.L.R., C.D.M.), Partners In Health (L.L., K.J.S., M.L.R., C.D.M.), the Division of Global Health Equity, Brigham and Women's Hospital (K.J.S., M.L.R., C.D.M.), the Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, (L.T.), and Harvard T.H. Chan School of Public Health (L.T.) - all in Boston; and the Indus Hospital and Health Network, Karachi, Pakistan (H. Mushtaque, N.S.).
Background: For decades, poor treatment options and low-quality evidence plagued care for patients with rifampin-resistant tuberculosis. The advent of new drugs to treat tuberculosis and enhanced funding now permit randomized, controlled trials of shortened-duration, all-oral treatments for rifampin-resistant tuberculosis.
Methods: We conducted a phase 3, multinational, open-label, randomized, controlled noninferiority trial to compare standard therapy for treatment of fluoroquinolone-susceptible, rifampin-resistant tuberculosis with five 9-month oral regimens that included various combinations of bedaquiline (B), delamanid (D), linezolid (L), levofloxacin (Lfx) or moxifloxacin (M), clofazimine (C), and pyrazinamide (Z).
Database (Oxford)
January 2025
Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium.
The European Union's ban on animal testing for cosmetic products and their ingredients, combined with the lack of validated animal-free methods, poses challenges in evaluating their potential repeated-dose organ toxicity. To address this, innovative strategies like Next-Generation Risk Assessment (NGRA) are being explored, integrating historical animal data with new mechanistic insights from non-animal New Approach Methodologies (NAMs). This paper introduces the TOXIN knowledge graph (TOXIN KG), a tool designed to retrieve toxicological information on cosmetic ingredients, with a focus on liver-related data.
View Article and Find Full Text PDFArq Bras Cardiol
January 2025
Serviço de Arritmia Cardíaca, Hospital SOS Cardio, Florianópolis, SC - Brasil.
Background: Treatment of atrial fibrillation (AF) with catheter ablation (CA) has evolved significantly. However, real-world data on long-term outcomes are limited, particularly in low- and middle-income countries.
Objective: This multicenter prospective cohort of consecutive patients aimed to evaluate the safety and efficacy of first-time CA for AF in Southern Brazil from 2009 to 2024.
Arq Bras Cir Dig
January 2025
Universidade de São Paulo, Faculty of Medicine, Department of Gastroenterology - São Paulo (SP), Brazil.
Background: Obesity is a predisposing factor for serious comorbidities, particularly those related to elevated cardiovascular mortality. The atherogenic index of plasma (AIP) has been shown to be a useful indicator of patients with insulin resistance.
Aims: The aim of this study was to assess cardiovascular risk before and after surgical treatment of obesity.
Rev Soc Bras Med Trop
January 2025
Universidade Federal do Paraná, Departamento de Clínica Médica, Programa de pós-graduação em Medicina Interna e Ciências da Saúde, Curitiba, PR, Brasil.
Cryptococcal disease is the third most common invasive fungal infection in solid organ transplant recipients and is associated with high-morbidity and -mortality rates. Donor-derived Cryptococcus spp. infection typically manifests within the first month post-procedure and has historically been caused by C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!