While marksmanship is a critical skill for military personnel, some service members experience difficulty in attaining and maintaining marksmanship qualifications. Temporal training may improve marksmanship performance, since rhythm and timing are critical for coordinated movement. In this study, we examined the effect of neurocognitive temporal training (NTT) on military personnel's marksmanship performance. We randomly assigned 41 active duty U.S. Army service members with prior marksmanship training into an NTT group that received 12 NTT training sessions ( = 18) and a Control group ( = 23) that received no NTT training. We measured marksmanship at baseline (pretest) and following either NTT (posttest) or, for the Control group, a comparable time period. We quantified marksmanship during 2 tasks of firing 5 self-paced shots at stationary 175 m and 300 m targets (Task 1) and firing at 50 moving and stationary targets of varying distances (Task 2). We recorded three measures of accuracy and three measures of precision (including Total Path Length, a unique measure quantifying shot-to-shot variability) for the first task, and we recorded one accuracy measure for the second task. To determine group differences for pretest versus posttest, we used multivariate analysis of variances for Task 1 and a mixed-model analysis of variance for Task 2. Results revealed significantly reduced variability and improved precision when firing at the 175 m target for the NTT group compared with the Control group ( < .05), but there were no significant group differences on other measures. While these results suggest the utility of neurocognitive timing and rhythm training for marksmanship precision, additional research is needed and should include varied training regimens, comparisons of expert versus novice shooters, additional outcome measures, and a larger participant sample.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0031512520927508 | DOI Listing |
Brain Struct Funct
January 2025
Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.
View Article and Find Full Text PDFInt J Rheum Dis
January 2025
Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology; State Key Laboratory of Complex Severe and Rare Diseases; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.
Aim: The continuous update of international guidelines and enhanced availability of biological disease-modifying antirheumatic drugs (bDMARDs) and targeted synthetic DMARDs (tsDMARDs) have made a significant impact on the diagnosis and treatment of early rheumatoid arthritis (ERA). This study aims to systematically evaluate the current treatment strategies and outcomes within a large-scale cohort of patients with ERA.
Methods: Data from the Chinese Registry of Rheumatoid Arthritis (CREDIT), a large multicenter Chinese registry of RA, were collected to analyze temporal trends in clinical profiles, therapeutic strategies, and treatment outcomes among patients with ERA.
Environ Int
January 2025
Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China.
Polystyrene nanoplastics (PS-NPs) are omnipresent in the air and can be inhaled by humans. However, their long-term adverse implications and toxicological mechanisms for human respiratory health are unclear. Therefore, this study aims to provide new insights into the pulmonary toxicity of PS-NPs using mice and organoid models.
View Article and Find Full Text PDFComput Biol Med
January 2025
Applied Artificial Intelligence Institute, Deakin University, Geelong, Australia.
Multimorbidity, the co-occurrence of multiple chronic conditions within the same individual, is increasing globally. This is a challenge for the single patients, as these individuals are subject to a heavy disease and treatment burden, yet evidence on the epidemiology and consequences of multimorbidity remains underexplored. Historically, studies aiming to understand multimorbidity patterns predominantly utilized cross-sectional data, neglecting the essential temporal dynamics which shape multimorbidity progression.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
Sensory neurons continually adapt their response characteristics according to recent stimulus history. However, it is unclear how such a reactive process can benefit the organism. Here, we test the hypothesis that adaptation actually acts proactively in the sense that it optimally adjusts sensory encoding for future stimuli.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!