Using electrophysiology, the effect of nicotinic acetylcholine receptor (nAChR) ligands on acetylcholine-induced depolarization in the neurons of Helix lucorum snail was studied. It was found that the α-conotoxin PnIA [R9, L10], a selective antagonist of α7 nAChR, and α-cobratoxin (antagonist of α7 and muscle-type nAChR) suppressed neuronal depolarization. Fluorescence microscopy showed staining of the neurons with fluorescently labeled α-bungarotoxin; this staining was reduced by pretreatment with α-cobratoxin. Induced depolarization was also suppressed by α-conotoxin RgIA, a selective inhibitor of α9 nAChR. In contrast to Lymnaea stagnalis nAChR, which are weakly sensitive to neurotoxin II and α-conotoxin GI, antagonists of muscle-type nAChR, H. lucorum receptors were most effectively inhibited by these antagonists. The results obtained, as well as the previously found sensitivity of the receptors studied in this work to muscarinic receptor ligands, indicate an unusual atypical pharmacological profile of H. lucorum nAChR.

Download full-text PDF

Source
http://dx.doi.org/10.1134/S1607672920020118DOI Listing

Publication Analysis

Top Keywords

antagonist α7
8
muscle-type nachr
8
nachr
7
atypical acetylcholine
4
acetylcholine receptors
4
receptors neurons
4
neurons turkish
4
turkish snail
4
snail electrophysiology
4
electrophysiology nicotinic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!