Anti-CD19 chimeric antigen receptor (CAR) T cells showed significant antileukemic activity in B-precursor acute lymphoblastic leukemia (ALL). Allogeneic, HLA-mismatched off-the-shelf third-party donors may offer ideal fitness of the effector cells, but carry the risk of graft-versus-host disease. Knockout (KO) of the endogenous T-cell receptor (TCR) in CD19-CAR-T cells may be a promising solution. Here, we induced a CRISPR/Cas9-mediated KO of the TCRβ chain in combination with a second-generation retroviral CAR transduction including a 4-1BB costimulatory domain in primary T cells. This tandem engineering led to a highly functional population of TCR-KO-CAR-T cells with strong activation (CD25, interferon γ), proliferation, and specific killing upon CD19 target recognition. TCR-KO-CAR-T cells had a balanced phenotype of central memory and effector memory T cells. KO of the endogenous TCR in T cells strongly ablated alloreactivity in comparison with TCR-expressing T cells. In a patient-derived xenograft model of childhood ALL, TCR-KO-CAR-T cells clearly controlled CD19+ leukemia burden and improved survival in vivo. However, coexpression of endogenous TCR plus CAR led to superior persistence of T cells and significantly prolonged leukemia control in vivo, confirmed by a second in vivo model using the leukemia cell line NALM6. These results point toward an essential role of the endogenous TCR for longevity of the response at the price of alloreactivity. In conclusion, anti-CD19 CAR T cells with a CRISPR/Cas9-mediated TCR-KO are promising candidates for nonmatched third-party adoptive T-cell transfer with high antileukemic functionality in the absence of alloreactivity, but long-term persistence in vivo is better in the presence of the endogenous TCR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612202 | PMC |
http://dx.doi.org/10.1182/blood.2020005185 | DOI Listing |
Mol Ther Nucleic Acids
March 2025
Department of Paediatrics, University of Oxford, Headington, Oxford OX3 7TY, UK.
Upstream open reading frames (uORFs) are -regulatory motifs that are predicted to occur in the 5' UTRs of the majority of human protein-coding transcripts and are typically associated with translational repression of the downstream primary open reading frame (pORF). Interference with uORF activity provides a potential mechanism for targeted upregulation of the expression of specific transcripts. It was previously reported that steric block antisense oligonucleotides (ASOs) can bind to and mask uORF start codons to inhibit translation initiation, and thereby disrupt uORF-mediated gene regulation.
View Article and Find Full Text PDFFront Immunol
December 2024
Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, Zhejiang, China.
Introduction: T cell Antigen Coupler (TAC) T cells harness all signaling subunits of endogenous T cell receptor (TCR) to trigger T-cell activation and tumor cell lysis, with minimal release of cytokines. Some of the major obstacles to cellular immunotherapy in solid tumors include inefficient cell infiltration into tumors, lack of prolonged cellular persistence, and therapy-associated toxicity.
Methods: To boost the cytotoxic potential of TAC-T cells against solid tumors, we generated a novel NECTIN-4-targeted TAC-T variant, NECTIN-4 TAC28-T, which integrated the co-stimulatory CD28 cytoplasmic region, and compared the anti-tumor activities between NECTIN-4 TAC-T cells and NECTIN-4 TAC28-T cells in vitro and vivo.
Mol Ther Methods Clin Dev
December 2024
Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
Regulatory T cells (Tregs) are promising cellular therapies to induce immune tolerance in organ transplantation and autoimmune disease. The success of chimeric antigen receptor (CAR) T cell therapy for cancer has sparked interest in using CARs to generate antigen-specific Tregs. Here, we compared CAR with endogenous T cell receptor (TCR)/CD28 activation in human Tregs.
View Article and Find Full Text PDFBrief Bioinform
November 2024
School of Computer Science and Technology, Harbin Institute of Technology, West DaZhi Street, 150001 Harbin, China.
Accurate prediction of binding between human leukocyte antigen (HLA) class I molecules and antigenic peptide segments is a challenging task and a key bottleneck in personalized immunotherapy for cancer. Although existing prediction tools have demonstrated significant results using established datasets, most can only predict the binding affinity of antigenic peptides to HLA and do not enable the immunogenic interpretation of new antigenic epitopes. This limitation results from the training data for the computational models relying heavily on a large amount of peptide-HLA (pHLA) eluting ligand data, in which most of the candidate epitopes lack immunogenicity.
View Article and Find Full Text PDFGenetically modified, induced pluripotent stem cells (iPSCs) offer a promising allogeneic source for the generation of functionally enhanced, chimeric antigen receptor (CAR) T cells. However, the signaling of CARs during early T cell development and the removal of the endogenous T cell receptor required to prevent alloreactivity pose significant challenges to the production of mature conventional CAR T cells from iPSCs. Here, we show that TCR-null, CD8αβ CAR T cells can be efficiently generated from iPSCs by engineering stage-specific onset of CAR expression and signaling to both permit conventional T cell development and to induce efficient positive selection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!