High-capacity alloy anode materials for Li-ion batteries have long been held back by limited cyclability caused by the large volume changes during lithium insertion and removal. Hollow and yolk-shell nanostructures have been used to increase the cycling stability by providing an inner void space to accommodate volume changes and a mechanically and dimensionally stable outer surface. These materials, however, require complex synthesis procedures. Here, using in situ transmission electron microscopy, we show that sufficiently small antimony nanocrystals spontaneously form uniform voids on the removal of lithium, which are then reversibly filled and vacated during cycling. This behaviour is found to arise from a resilient native oxide layer that allows for an initial expansion during lithiation but mechanically prevents shrinkage as antimony forms voids during delithiation. We developed a chemomechanical model that explains these observations, and we demonstrate that this behaviour is size dependent. Thus, antimony naturally evolves to form optimal nanostructures for alloy anodes, as we show through electrochemical experiments in a half-cell configuration in which 15-nm antimony nanocrystals have a consistently higher Coulombic efficiency than larger nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41565-020-0690-9DOI Listing

Publication Analysis

Top Keywords

alloy anode
8
volume changes
8
antimony nanocrystals
8
spontaneous reversible
4
reversible hollowing
4
hollowing alloy
4
anode nanocrystals
4
nanocrystals stable
4
stable battery
4
battery cycling
4

Similar Publications

Organics electrooxidation coupled hydrogen production has attracted increasing attention due to the low operation voltage. Nevertheless, the spontaneous production of hydrogen coupled with organics valorization remains challenging. Herein, we develop ultrathin Au/Pt twin nanowire (NW) catalysts for both electrochemical glucose oxidation and hydrogen evolution reaction towards a spontaneous hydrogen production system.

View Article and Find Full Text PDF

Anode-Free Zinc-Bromine Batteries Enabled by a Simple Prenucleation Strategy.

Small

January 2025

Department of Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China.

The design of anode-free zinc (Zn) batteries with high reversibility at high areal capacity has received significant attention recently, which is quietly challenging yet. Here, a Zn alloyed interface through electroplating is introduced, providing homogeneous Zn prenucleation sites to stabilize subsequent Zn nucleation and plating. By employing Zn-Cu alloy as a module, the complementary simulations and characterizations confirm that the prenucleation alloyed interfaces achieve a homogeneous electric field distribution and greatly enhance the stability of the Zn anode.

View Article and Find Full Text PDF

Sn-based electrodes are promising candidates for next-generation lithium-ion batteries. However, it suffers from deleterious micro-structural deformation as it undergoes drastic volume changes upon lithium insertion and extraction. Progress in designing these materials is limited to complex structures.

View Article and Find Full Text PDF

Growth of lithium whiskers or dendrites is the major obstacle towards safe and stable utilization of lithium metal anodes in rechargeable batteries. In this study, we look deeper into the mechanism of lithium electrodeposition. We find that before lithium whisker or dendrite nucleation occurs, lithium is deposited into the grain boundaries of the metal electrode, which we directly observed in the focused ion beam cross-sections of the lithium electrode.

View Article and Find Full Text PDF

Self-corrosion and low practical voltage of anodes severely limit the usage of Mg-air batteries. Although many elements, including indium (In), have been used to enhance the discharge characteristics of Mg anodes, unclear mechanism of the action of a single element and lack of research on binary alloys as anodes have restricted the development of Mg-air batteries. Herein, Mg-In ( = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!