Dexmedetomidine Exerts an Anti-inflammatory Effect via α2 Adrenoceptors to Prevent Lipopolysaccharide-induced Cognitive Decline in Mice.

Anesthesiology

From the Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (R.L., P.Z.) the Center for Brain Science, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (R.L.) the Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care (R.L., I.K.L., J.Z.P., M.M.) the Brain and Spinal Injury Center (J.Z.P.), University of California, San Francisco, California.

Published: August 2020

Background: Clinical studies have shown that dexmedetomidine ameliorates cognitive decline in both the postoperative and critical care settings. This study determined the mechanism(s) for the benefit provided by dexmedetomidine in a medical illness in mice induced by lipopolysaccharide.

Methods: Cognitive decline, peripheral and hippocampal inflammation, blood-brain barrier permeability, and inflammation resolution were assessed in male mice. Dexmedetomidine was administered in the presence of lipopolysaccharide and in combination with blockers. Cultured macrophages (RAW 264.7; BV-2) were exposed to lipopolysaccharide ± dexmedetomidine ± yohimbine; tumor necrosis factor α release into the medium and monocyte NFκB activity was determined.

Results: In vivo, lipopolysaccharide-induced cognitive decline and inflammation (mean ± SD) were reversed by dexmedetomidine (freezing time, 55.68 ± 12.31 vs. 35.40 ± 17.66%, P = 0.0286, n = 14; plasma interleukin [IL]-1β: 30.53 ± 9.53 vs. 75.68 ± 11.04 pg/ml, P < 0.0001; hippocampal IL-1β: 3.66 ± 1.88 vs. 28.73 ± 5.20 pg/mg, P < 0.0001; n = 8), which was prevented by α2 adrenoceptor antagonists. Similar results were found in 12-month-old mice. Lipopolysaccharide also increased blood-brain barrier leakage, inflammation-resolution orchestrator, and proresolving and proinflammatory mediators; each lipopolysaccharide effect was attenuated by dexmedetomidine, and yohimbine prevented dexmedetomidine's attenuating effect. In vitro, lipopolysaccharide-induced tumor necrosis factor α release (RAW 264.7: 6,308.00 ± 213.60 vs. 7,767.00 ± 358.10 pg/ml, P < 0.0001; BV-2: 1,075.00 ± 40.41 vs. 1,280.00 ± 100.30 pg/ml, P = 0.0003) and NFκB-p65 activity (nuclear translocation [RAW 264.7: 1.23 ± 0.31 vs. 2.36 ± 0.23, P = 0.0031; BV-2: 1.08 ± 0.26 vs. 1.78 ± 0.14, P = 0.0116]; phosphorylation [RAW 264.7: 1.22 ± 0.40 vs. 1.94 ± 0.23, P = 0.0493; BV-2: 1.04 ± 0.36 vs. 2.04 ± 0.17, P = 0.0025]) were reversed by dexmedetomidine, which was prevented by yohimbine.

Conclusions: Preclinical studies suggest that the cognitive benefit provided by dexmedetomidine in mice administered lipopolysaccharide is mediated through α2 adrenoceptor-mediated anti-inflammatory pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1097/ALN.0000000000003390DOI Listing

Publication Analysis

Top Keywords

cognitive decline
16
dexmedetomidine
9
lipopolysaccharide-induced cognitive
8
benefit provided
8
provided dexmedetomidine
8
blood-brain barrier
8
raw 2647
8
dexmedetomidine yohimbine
8
tumor necrosis
8
necrosis factor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!