The human malaria parasite, , contains an essential plastid called the apicoplast. Most apicoplast proteins are encoded by the nuclear genome and it is unclear how the plastid proteome is regulated. Here, we study an apicoplast-localized caseinolytic-protease (Clp) system and how it regulates organelle proteostasis. Using null and conditional mutants, we demonstrate that the Clp protease (ClpP) has robust enzymatic activity that is essential for apicoplast biogenesis. We developed a CRISPR/Cas9-based system to express catalytically dead ClpP, which showed that ClpP oligomerizes as a zymogen and is matured via transautocatalysis. The expression of both wild-type and mutant Clp chaperone (ClpC) variants revealed a functional chaperone-protease interaction. Conditional mutants of the substrate-adaptor (ClpS) demonstrated its essential function in plastid biogenesis. A combination of multiple affinity purification screens identified the Clp complex composition as well as putative Clp substrates. This comprehensive study reveals the molecular composition and interactions influencing the proteolytic function of the apicoplast Clp system and demonstrates its central role in the biogenesis of the plastid in malaria parasites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7306762 | PMC |
http://dx.doi.org/10.1073/pnas.1919501117 | DOI Listing |
Commun Biol
January 2025
Institute of biology, Plant Physiology Laboratory, Université de Neuchâtel, 2000, Neuchâtel, Switzerland.
Photosynthetic activity is established during chloroplast biogenesis. In this study we used 680 nm red light to overexcite Photosystem II and disrupt photosynthesis in two conditional mutants (var2 and abc1k1) which reversibly arrested chloroplast biogenesis. During biogenesis, chloroplasts import most proteins associated with photosynthesis.
View Article and Find Full Text PDFBMC Genom Data
January 2025
School of Ecology, Sun Yat-sen University, Shenzhen, 518000, China.
Objective: Mitochondrial genome sequences are very useful for understanding the mitogenome evolution itself and reconstructing phylogeny of different plant lineages. Bauhinia purpurea, a species from the legume family Leguminosae, is widely distributed in South China and has high ornamental value. Here, we sequenced and assembled the mitogenome of B.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120, Krakow, Poland.
Carrot callus grown on a medium with increased nitrogen have reduced carotenoid accumulation, changed gene expression, high amount of vesicular plastids and altered cell wall composition. Carotenoid biosynthesis is vital for plant development and quality, yet its regulation under varying nutrient conditions remains unclear. To explore the effects of nitrogen (N) availability, we used carrot (Daucus carota L.
View Article and Find Full Text PDFPlant Divers
November 2024
Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
The angiosperm family Elaeagnaceae comprises three genera and . 100 species distributed mainly in Eurasia and North America. Little family-wide phylogenetic and biogeographic research on Elaeagnaceae has been conducted, limiting the application and preservation of natural genetic resources.
View Article and Find Full Text PDFNat Commun
January 2025
Molecular Genetics of Eukaryotes, University of Kaiserslautern, Kaiserslautern, Germany.
Molecular chaperones are essential throughout a protein's life and act already during protein synthesis. Bacteria and chloroplasts of plant cells share the ribosome-associated chaperone trigger factor (Tig1 in plastids), facilitating maturation of emerging nascent polypeptides. While typical trigger factor chaperones employ three domains for their task, the here described truncated form, Tig2, contains just the ribosome binding domain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!