The protooncogene MYC regulates a variety of cellular processes, including proliferation and metabolism. Maintaining MYC at homeostatic levels is critical to normal cell function; overexpression drives many cancers. MYC stability is regulated through phosphorylation: phosphorylation at Thr58 signals degradation while Ser62 phosphorylation leads to its stabilization and functional activation. The bromodomain protein 4 (BRD4) is a transcriptional and epigenetic regulator with intrinsic kinase and histone acetyltransferase (HAT) activities that activates transcription of key protooncogenes, including We report that BRD4 phosphorylates MYC at Thr58, leading to MYC ubiquitination and degradation, thereby regulating MYC target genes. Importantly, BRD4 degradation, but not inhibition, results in increased levels of MYC protein. Conversely, MYC inhibits BRD4's HAT activity, suggesting that MYC regulates its own transcription by limiting BRD4-mediated chromatin remodeling of its locus. The MYC stabilizing kinase, ERK1, regulates MYC levels directly and indirectly by inhibiting BRD4 kinase activity. These findings demonstrate that BRD4 negatively regulates MYC levels, which is counteracted by ERK1 activation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7306749 | PMC |
http://dx.doi.org/10.1073/pnas.1919507117 | DOI Listing |
In Silico Pharmacol
December 2024
Agro-Technology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam India.
A network pharmacology approach was used to construct comprehensive pharmacological networks, elucidating the interactions between agarwood compounds and key biological targets associated with cancer pathways. We have employed a combination of network pharmacology, molecular docking and molecular dynamics to unravel agarwood plants' active components and potential mechanisms. Reported 23 molecules were collected from the agarwood plants and considered to identify molecular targets.
View Article and Find Full Text PDFNeoplasia
December 2024
General Surgery Center Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China; Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China. Electronic address:
Immunotherapy with checkpoint inhibitors produced significant clinical responses in a subset of cancer patients who were resistant to prior therapies. However, Castration-resistant prostate cancer (CRPC) is seriously lack of T cell infiltration, which greatly limits the clinical application of immunotherapy, but the mechanism is unclear. In the present study, in silico analyses and experimental data show that HnRNP L was significantly negatively correlated with CD4+ and CD8+ T cells infiltration in patients; besides, we found deficiency of HnRNP L recruites CD4+ and CD8+ T cells infiltration and impairs tumorigenesis.
View Article and Find Full Text PDFCirculation
January 2025
Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute; and Emory University School of Medicine, Atlanta, GA (L.S.S.).
There is a new awareness of the widespread nature of metabolic dysfunction-associated steatotic liver disease (MASLD) and its connection to cardiovascular disease (CVD). This has catalyzed collaboration between cardiologists, hepatologists, endocrinologists, and the wider multidisciplinary team to address the need for earlier identification of those with MASLD who are at increased risk for CVD. The overlap in the pathophysiologic processes and parallel prevalence of CVD, metabolic syndrome, and MASLD highlight the multisystem consequences of poor cardiovascular-liver-metabolic health.
View Article and Find Full Text PDFVavilovskii Zhurnal Genet Selektsii
November 2024
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
Frontotemporal dementia with parkinsonism-17 is a neurodegenerative disease characterised by pathological aggregation of the tau protein with the formation of neurofibrillary tangles and subsequent neuronal death. The inherited form of frontotemporal dementia can be caused by mutations in several genes, including the MAPT gene on chromosome 17, which encodes the tau protein. As there are currently no medically approved treatments for frontotemporal dementia, there is an urgent need for research using in vitro cell models to understand the molecular genetic mechanisms that lead to the development of the disease, to identify targets for therapeutic intervention and to test potential drugs to prevent neuronal death.
View Article and Find Full Text PDFCureus
December 2024
Department of Digestive Disease, Xiamen Chang Gung Hospital, Hua Qiao University, Xiamen, CHN.
We present the case of a 68-year-old woman who underwent complete endoscopic resection of a superficial serrated adenoma (SuSA). Due to its rarity and limited case reports, SuSA is often misdiagnosed as a hyperplastic lesion without malignant potential, leading to missed diagnoses. A polypoid lesion was identified in the sigmoid colon during the initial endoscopic evaluation, where it was initially classified as a sessile serrated lesion (SSL).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!