QPX7728 is an investigational ultrabroad-spectrum-beta-lactamase inhibitor (BLI) with potent inhibition of key serine and metallo-beta-lactamases. QPX7728 enhances the potency of many beta-lactams, including carbapenems, in isogenic strains of Gram-negative bacteria producing various beta-lactamases. The potency of meropenem alone and in combination with QPX7728 (tested at fixed concentrations of 1 to 16 μg/ml) was tested against 598 clinical isolates of carbapenem-resistant (CRE). The panel included 363 strains producing serine carbapenemases, 224 strains producing metallo-beta-lactamases (151 NDM, 53 VIM, and 20 IMP), and 50 strains that did not carry any known carbapenemases but were resistant to meropenem (MIC ≥ 4 μg/ml). The panel was also enriched in strains that had various defects in the major porins OmpK35/OmpF and OmpK36/OmpC. Increasing concentrations of QPX7728 restored the potency of meropenem against CRE, with the meropenem MIC decreasing from >64 μg/ml to 0.5 μg/ml for QPX7728 (8 μg/ml). QPX7728 significantly increased the potency of meropenem against CRE with multiple resistance mechanisms; the reduction in the meropenem MIC with QPX7728 (8 μg/ml) ranged from 32- to >256-fold. Compared with other beta-lactamase inhibitor combinations, meropenem-vaborbactam, ceftazidime-avibactam, and imipenem-relebactam, meropenem with QPX7728 was the most potent beta-lactam-BLI combination tested against all groups of CRE with multiple resistance mechanisms. Defects in OmpK36 in KPC-producing strains markedly decreased the potency of meropenem with vaborbactam (128-fold increase in the MIC), whereas only an 8- to 16-fold change was observed with QPX7728 plus meropenem. More than 90% of various CRE subsets (including those with reduced permeability) were susceptible to ≤8 μg/ml of meropenem with QPX7728 at 8 μg/ml or lower. The combination of QPX7728 with meropenem against CRE has an attractive microbiological profile in CRE with multiple resistance mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7526838 | PMC |
http://dx.doi.org/10.1128/AAC.00757-20 | DOI Listing |
J Neuroimmune Pharmacol
January 2025
Pharmacy Department, Baotou Central Hospital, Baotou, 014040, Inner Mongolia, China.
Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Laboratorio de Bioproducción, Bioinsumos, INIA Las Brujas, Canelones, Uruguay.
Background: Biological control methods involving entomopathogenic fungi like Beauveria bassiana have been shown to be a valuable approach in integrated pest management as an environmentally friendly alternative to control pests and pathogens. Identifying genetic determinants of pathogenicity in B. bassiana is instrumental for enhancing its virulence against insects like the resistant soybean pest Piezodorus guildinii.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Department of Entomology, National Chung Hsing University, Taichung City, Taiwan.
Background: The lesser grain borer, Rhyzopertha dominica, is a serious stored-products pest mainly controlled by insecticides. Spinosad, an environmentally friendly biological insecticide with low mammalian toxicity, is considered a suitable candidate for R. dominica management.
View Article and Find Full Text PDFPest Manag Sci
January 2025
School of Life Science, Anhui Agricultural University, Hefei, China.
Background: Previously, eight new alkaloids were obtained from the fermentation extract of termite-associated Streptomyces tanashiensis BYF-112. However, genome analysis indicated the presence of many undiscovered secondary metabolites in S. tanashiensis BYF-112.
View Article and Find Full Text PDFPest Manag Sci
January 2025
College of Plant Protection, Hunan Agricultural University, Changsha, China.
Background: Resistance to multiple herbicides is common in Lolium rigidum. Here, resistance to acetolactate synthase (ALS)- and susceptibility to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides was confirmed in a glyphosate-resistant L. rigidum population (NLR70) from Australia and the mechanisms of pyroxsulam resistance were examined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!