Exercise induces neuroplasticity in descending motor pathways facilitating motor learning, and as such it could be utilized as an intervention in neurorehabilitation, for example when re-learning motor skills after stroke. To date, however, the neurophysiological and molecular mechanisms underlying exercise-induced neuroplasticity remain largely unknown impeding the potential utilization of exercise protocols as 'motor learning boosters' in clinical and non-clinical settings. Here, we assessed corticospinal excitability, intracortical facilitation (ICF) and short-interval intracortical inhibition (SICI) using transcranial magnetic stimulation (TMS) and serum biochemical markers including brain-derived neurotrophic factor (BDNF), total and precursor cathepsin B (tCTSB, proCTSB), uncarboxylated and carboxylated osteocalcin (unOCN, cOCN) and irisin using ELISA. Measurements were carried out in sedentary, healthy males before and after a single session of high-intensity interval exercise (HIIE) or in individuals who rested and did not perform exercise (No Exercise). We found that HIIE increased corticospinal excitability, BDNF and unOCN, and decreased cOCN. We also determined that greater increases in BDNF were associated with increases in unOCN and irisin and decreases in cOCN only in participants who underwent HIIE, suggesting that unOCN and irisin may contribute to exercise-induced BDNF increases. Conversely, no changes other than a decrease in serum unOCN/tOCN were found in No Exercise participants. The present findings show that a single session of HIIE is sufficient to modulate corticospinal excitability and to increase BDNF and unOCN in sedentary, healthy males.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2020.03.042DOI Listing

Publication Analysis

Top Keywords

corticospinal excitability
16
sedentary healthy
12
healthy males
12
high-intensity interval
8
interval exercise
8
brain-derived neurotrophic
8
neurotrophic factor
8
single session
8
exercise hiie
8
bdnf unocn
8

Similar Publications

Corticospinal motor neurons (CSMN), located in the motor cortex of the brain, are one of the key components of the motor neuron circuitry. They are in part responsible for the initiation and modulation of voluntary movement, and their degeneration is the hallmark for numerous diseases, such as amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and primary lateral sclerosis. Cortical hyperexcitation followed by in-excitability suggests the early involvement of cortical dysfunction in ALS pathology.

View Article and Find Full Text PDF
Article Synopsis
  • A new technique called high-PAS combines high-frequency peripheral nerve stimulation (PNS) and high-intensity transcranial magnetic stimulation (TMS) to potentially enhance motor function in patients with incomplete spinal cord injuries.
  • The interstimulus interval (ISI) in high-PAS allows for flexibility, making it easier to implement in clinical settings where precise timing is tough, but this also creates challenges for measuring its effectiveness.
  • Research with ten healthy participants showed that high-PAS improved motor-evoked potentials (MEPs) and significantly increased spinal excitability (measured by H-reflex amplitudes) during spinal-targeted sessions, but not in cortical-targeted sessions.
View Article and Find Full Text PDF

Corticospinal and Clinical Effects of Muscle Tendon Vibration in Neurologically Impaired Individuals. A Scoping Review.

J Mot Behav

December 2024

Laboratoire de recherche Biomécanique & Neurophysiologique en Réadaptation neuro-musculo-squelettique, Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Chicoutimi, Canada.

This review verified the extent, variety, quality and main findings of studies that have tested the neurophysiological and clinical effects of muscle tendon vibration (VIB) in individuals with sensorimotor impairments. The search was conducted on PubMed, CINAHL, and SportDiscuss up to April 2024. Studies were selected if they included humans with neurological impairments, applied VIB and used at least one measure of corticospinal excitability using transcranial magnetic stimulation (TMS).

View Article and Find Full Text PDF

Objective: Corticospinal excitability can be quantified using motor-evoked potentials (MEP) following transcranial magnetic stimulation (TMS). However, the inherent variability of MEPs poses significant challenges. We establish a framework using personal and experimental factors to select the optimal number of trials (n) required for reliable MEP estimates.

View Article and Find Full Text PDF

The present study aimed to investigate changes in corticospinal excitability (CSE) by observing unnatural walking patterns on a treadmill with different left and right belt speeds. Fifteen healthy adults watched video clips (10 s each) of walking under the tied condition (left and right treadmill belt speeds are the same), walking during the initial and late periods under the split-belt condition (left and right treadmill belt speeds are different), and the static fixation cross (control condition) in random order. The step lengths of the actor in the walking clips were almost symmetric under the tied condition and during the late period under the split-belt condition but largely asymmetric during the initial period under the split-belt condition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!