Infection or inflammation can cause the in vivo microenvironment to become acidic, and an inappropriately excessive inflammatory response can significantly delay the healing process. A feasible acid-responsive ibuprofen-loaded poly(l-lactide) (PLLA) fibrous scaffold with doped sodium bicarbonate has been designed to prevent an excessive inflammatory response and promote regeneration. The results of the in vitro drug release study show that the acid-responsive fibrous scaffold exhibited a quick drug releasing response at pH 5.0 and a slow drug releasing response at pH 7.4. The in vivo rat muscle wound model study shows that the acid-responsive ibuprofen-loaded PLLA fibrous scaffold caused slighter inflammation and an earlier reparation. The immunohistochemical staining and quantitative real-time polymerase chain reaction analysis further showed that the scaffold caused lower levels of inflammatory factors and a higher expression of repair factors during the whole observation. Taken together, through the muscle wound healing process, the results demonstrate that the acid-responsive ibuprofen-loaded PLLA fibrous scaffold shows a better performance in preventing excessive inflammation than scaffolds that do not contain ibuprofen or are not acid-responsive. Additionally, the acid-responsive ibuprofen-loaded PLLA fibrous scaffold also has a faster healing process than others.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3bm60198fDOI Listing

Publication Analysis

Top Keywords

fibrous scaffold
24
acid-responsive ibuprofen-loaded
16
plla fibrous
16
muscle wound
12
healing process
12
ibuprofen-loaded plla
12
scaffold doped
8
doped sodium
8
sodium bicarbonate
8
wound healing
8

Similar Publications

A primary challenge following severe musculoskeletal trauma is incomplete muscle regeneration. Current therapies often fail to heal damaged muscle due to dysregulated healing programs and insufficient revascularization early in the repair process. There is a limited understanding of the temporal changes that occur during the early stages of muscle remodeling in response to engineered therapies.

View Article and Find Full Text PDF

In this study, an advanced nanofiber breast cancer model was developed and systematically characterized including physico-chemical, cell-biological and biophysical parameters. Using electrospinning, the architecture of tumor-associated collagen signatures (TACS5 and TACS6) was mimicked. By employing a rotating cylinder or static plate collector set-up, aligned fibers (TACS5-like structures) and randomly orientated fibers (TACS6-like structures) fibers were produced, respectively.

View Article and Find Full Text PDF

Macrophages play a key role in wound healing. Dysfunction of their M0 polarization to M2 leads to disorders of the wound immune microenvironment and chronic inflammation, which affects wound healing. Regulating the polarization of M0 macrophages to M2 macrophages is an effective strategy for treating wound healing.

View Article and Find Full Text PDF

Design and Synthesis of Triazine-Based Hydrogel for Combined Targeted Doxorubicin Delivery and PI3K Inhibition.

ACS Biomater Sci Eng

January 2025

School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.

Melanoma, an aggressive skin cancer originating from melanocytes, presents substantial challenges due to its high metastatic potential and resistance to conventional therapies. Hydrogels, 3D networks of hydrophilic polymers with high water-retention capacities, offer significant promise for controlled drug delivery applications. In this study, we report the synthesis and characterization of hydrogelators based on the triazine molecular scaffold, which self-assemble into fibrous networks conducive to hydrogel formation.

View Article and Find Full Text PDF

Decellularized Green and Brown Macroalgae as Cellulose Matrices for Tissue Engineering.

J Funct Biomater

December 2024

Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.

Scaffolds resembling the extracellular matrix (ECM) provide structural support for cells in the engineering of tissue constructs. Various material sources and fabrication techniques have been employed in scaffold production. Cellulose-based matrices are of interest due to their abundant supply, hydrophilicity, mechanical strength, and biological inertness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!