A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A pH-sensitive nano drug delivery system of doxorubicin-conjugated amphiphilic polyrotaxane-based block copolymers. | LitMetric

A pH-sensitive nano antitumor drug delivery system was prepared by conjugating doxorubicin (DOX) to amphiphilic polyrotaxane (PR)-based block copolymers through a pH-sensitive cis-aconityl moiety. The resulting polymer-drug conjugates were able to self-assemble into polymeric micelles in an aqueous solution with diameters varying from 297 nm to 178 nm after the conjugation as evidenced by DLS measurements. The pH-sensitive cis-aconityl linkage provided a controlled and sustained release of DOX over a period of more than 5 days in an acidic environment mimicking the tumor microenvironment, and a negligible amount of release in an environment with physiological pH. The nanoparticles had lower cytotoxicity than the free drug and can efficiently transfer and release the drug into HeLa cells. With these promising properties, the PR-based block copolymers have the potential to be carriers for the controlled release of antitumor drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3bm60112aDOI Listing

Publication Analysis

Top Keywords

block copolymers
12
ph-sensitive nano
8
drug delivery
8
delivery system
8
copolymers ph-sensitive
8
pr-based block
8
ph-sensitive cis-aconityl
8
ph-sensitive
4
drug
4
nano drug
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!