In this work, buckypaper composed of multi-walled carbon nanotubes (MWCNT) was prepared through a vacuum filtration process. The effect of MWCNT aspect ratio on the buckypaper performance was investigated. The freestanding and highly flexible buckypaper can be used as a sensor to attach on a complex surface monitoring the strain and temperature at the critical area. The mechanical properties of the buckypaper were examined using the tensile and nanoindentation tests. The strain and temperature sensitivities of the buckypaper were evaluated through the four-point bending and thermal chamber tests, respectively. In addition, the microstructure and thermal stability of the buckypaper were studied by scanning electron microscopy (SEM) and thermogravimetric analyzer (TGA), respectively. Experimental results showed that the mechanical properties such as Young's modulus, tensile strength, fracture strain, and hardness of the buckypaper made of high aspect ratio MWCNTs were significantly superior to the buckypaper consisted of low aspect ratio MWCNTs, while the strain and temperature sensitivities of the buckypaper composed of low aspect ratio MWCNTs were better than that of the buckypaper made of high aspect ratio MWCNTs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308846PMC
http://dx.doi.org/10.3390/s20113067DOI Listing

Publication Analysis

Top Keywords

aspect ratio
20
strain temperature
16
ratio mwcnts
16
temperature sensitivities
12
mechanical properties
12
buckypaper
11
buckypaper composed
8
sensitivities buckypaper
8
buckypaper high
8
high aspect
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!