Many halophytic physiological traits related to the tolerance of plants to salinity excess have been extensively studied, with a focus on biomass and/or gas exchange parameters. To gain a more complete understanding of whether salinity excess affects the physiological performance of halophytes, an experiment was performed using the halophyte L. as a model. plants were subjected to two salinity treatments (171 and 513 mM NaCl) over 60 days in a controlled environment. After this period, dry biomass, specific stem conductivity, water potential at turgor loss point, osmotic potential, gas exchange parameters, and the fluorescence of chlorophyll derived parameters were assessed in order to obtain knowledge about the differences in vulnerability that these parameters can show when subjected to salinity stress. Our results showed a decrease in belowground and aboveground biomass. The decrement in biomass seen at 513 mM NaCl was related to photosynthetic limitations and specific stem conductivity. Turgor loss point did not vary significantly with the increment of salinity. Therefore, the parameter that showed less vulnerability to saline stress was the turgor loss point, with only a 5% decrease, and the more vulnerable trait was the stem conductivity, with a reduction of nearly 50%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7356256 | PMC |
http://dx.doi.org/10.3390/plants9060690 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!