Bioplastic Production from Microalgae: A Review.

Int J Environ Res Public Health

Sustainable Resource and Waste Management, Hamburg University of Technology, 21079 Hamburg, Germany.

Published: May 2020

Plastic waste production around the world is increasing, which leads to global plastic waste pollution. The need for an innovative solution to reduce this pollution is inevitable. Increased recycling of plastic waste alone is not a comprehensive solution. Furthermore, decreasing fossil-based plastic usage is an important aspect of sustainability. As an alternative to fossil-based plastics in the market, bio-based plastics are gaining in popularity. According to the studies conducted, products with similar performance characteristics can be obtained using biological feedstocks instead of fossil-based sources. In particular, bioplastic production from microalgae is a new opportunity to be explored and further improved. The aim of this study is to determine the current state of bioplastic production technologies from microalgae species and reveal possible optimization opportunities in the process and application areas. Therefore, the species used as resources for bioplastic production, the microalgae cultivation methods and bioplastic material production methods from microalgae were summarized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7312682PMC
http://dx.doi.org/10.3390/ijerph17113842DOI Listing

Publication Analysis

Top Keywords

bioplastic production
16
production microalgae
12
plastic waste
12
bioplastic
5
microalgae
5
production
5
microalgae review
4
plastic
4
review plastic
4
waste production
4

Similar Publications

This study focuses on the development of an efficient membrane-based clarification process to enhance the performance of subsequent ultrafiltration and produce high-quality sweet lime juice. A range of casting solutions were prepared using a blend of pore-forming polymers, including polyvinylpyrrolidone (PVP), polyvinylidene fluoride (PVDF), and cellulose acetate (CA), dissolved in dimethylformamide (DMF) solvent through the phase inversion technique. To further enhance the membrane's performance, four biopolymers poly (lactic acid) (PLA), xanthan gum, chitosan, and gelatin were incorporated, with and without clay, to refine its structure, porosity, and surface properties.

View Article and Find Full Text PDF

A review of lignin as a precursor for macromonomers: Challenges and opportunities in utilizing agri-food waste.

Int J Biol Macromol

January 2025

Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy. Electronic address:

Lignocellulosic biomass, rich in cellulose, hemicellulose, and lignin, represents a promising renewable resource. However, lignin, a complex polyphenolic material, remains underutilized despite its surplus production. This review focuses on the conversion of lignin into macromonomers for polymer production.

View Article and Find Full Text PDF

The domesticated silkworm, Bombyx mori, is crucial for global silk production, which is a significant economic activity supporting millions of livelihoods worldwide. Beyond traditional silk production, the growing demand for insect larvae in cosmetics, biomedical products, and animal feed underscores the need to enhance B. mori productivity.

View Article and Find Full Text PDF

The biochemical composition of sediments, which depends on the origin of the organic matter (OM), is decisive in methane (CH) production. This study aimed to determine the CH produced under anaerobic conditions from different substrates: native reservoir sediments and sediments with the addition of complex OM from Microcystis spp. blooms and terrestrial plants (pasture), alongside the biochemical characterization of the substrates used.

View Article and Find Full Text PDF

Understanding the electron pathway fluidity of Synechocystis in biophotovoltaics.

Plant J

January 2025

Systems Biotechnology Group, Department Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, 04318, Germany.

Biophotovoltaics offers a promising low-carbon footprint approach to utilize solar energy. It aims to couple natural oxygenic photosynthetic electrons to an external electron sink. This lays the foundation for a potentially high light-to-energy efficiency of the Biophotovoltaic process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!