Nitrile hydratases (NHase) catalyze the hydration of nitriles to the corresponding amides. We report on the heterologous expression of various nitrile hydratases. Some of these enzymes have been investigated by others and us before, but sixteen target proteins represent novel sequences. Of 21 target sequences, 4 iron and 16 cobalt containing proteins were functionally expressed from BL21 (DE3) Gold. Cell free extracts were used for activity profiling and basic characterization of the NHases using the typical NHase substrate methacrylonitrile. Co-type NHases are more tolerant to high pH than Fe-type NHases. A screening for activity on three structurally diverse nitriles was carried out. Two novel Co-dependent NHases from and and a new Fe-type NHase from were very well expressed and hydrated methacrylonitrile, pyrazine-carbonitrile, and 3-amino-3-(-toluoyl)propanenitrile. The Co-dependent NHases from and , as well as two Fe-dependent NHases from , were-in addition-able to produce the amide from cinnamonitrile. Summarizing, seven so far uncharacterized NHases are described to be promising biocatalysts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321127 | PMC |
http://dx.doi.org/10.3390/molecules25112521 | DOI Listing |
Chembiochem
December 2024
School of Chemical Engineering, Laboratory of Advanced Materials and Catalytic Engineering, Dalian University of Technology, Dalian, 116024, China.
Escherichia coli (E. coli) is the most commonly used bacterial recombinant protein production system due to its easy genetic modification properties. In our previous study, a recombinant plasmid expressing the Fe-type nitrile hydratase derived from Rhodococcus erythropolis CCM2595 (ReNHase) was successfully constructed and the recombinant ReNHase exerted an excellent catalytic effect on dinitrile compounds.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradká 237, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 01 Třeboň, Czech Republic.
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are intriguing compounds with potential pharmacological applications. While many RiPPs are known as antimicrobial agents, a limited number of RiPPs with anti-proliferative effects in cancer cells are available. Here we report the discovery of nostatin A (NosA), a highly modified RiPP belonging among nitrile hydratase-like leader peptide RiPPs (proteusins), isolated from a terrestrial cyanobacterium sp.
View Article and Find Full Text PDFFront Microbiol
November 2024
The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, China.
Extensive use of the neonicotinoid insecticides acetamiprid (ACE) and flonicamid (FLO) in agriculture poses severe environmental and ecological risks. Microbial remediation is considered a feasible approach to address these issues. Many ACE-and FLO-degrading microorganisms have been isolated and characterized, but few reviews have concentrated on the underlying degradation mechanisms.
View Article and Find Full Text PDFJ Inorg Biochem
January 2025
Department of Chemistry, Colorado School of Mines, Golden, CO 80401, USA. Electronic address:
A highly conserved second-sphere active site αSer residue in nitrile hydratase (NHase), that forms a hydrogen bond with the axial metal-bound water molecule, was mutated to Ala, Asp, and Thr, in the Co-type NHase from Pseudonocardia thermophila JCM 3095 (PtNHase) and to Ala and Thr in the Fe-type NHase from Rhodococcus equi TG328-2 (ReNHase). All five mutants were successfully purified; metal analysis via ICP-AES indicated that all three Co-type PtNHase mutants were in their apo-form while the Fe-type αSer117Ala and αSer117Thr mutants contained 85 and 50 % of their active site Fe(III) ions, respectively. The k values obtained for the PtNHase mutant enzymes were between 0.
View Article and Find Full Text PDFBiotechnol Lett
December 2024
Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China.
Amides are an important type of synthetic intermediate used in the chemical, agrochemical, pharmaceutical, and nutraceutical industries. The traditional chemical process of converting nitriles into the corresponding amides is feasible but is restricted because of the harsh conditions required. In recent decades, nitrile hydratase (NHase, EC 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!