Norway maple (Acer platanoides L., orthodox) and sycamore (Acer pseudoplatanus L., recalcitrant) belong to the same genus and grow under similar climatic conditions, but their seeds differ in their tolerance to desiccation. The initial water content (WC) of the seeds used in this study was 50%, and they were dried to 40, 20 and 7%. The mitochondrial peroxiredoxin IIF (PRXIIF) was identified in seeds of both species by immunoblotting. Semiquantitative RT-PCR analyses indicated that the transcript level of PRXIIF in both types of seeds increased during different stages of desiccation and was higher in seeds of Norway maple than in sycamore. General proteome analyses showed important differences between orthodox and recalcitrant seeds. In sycamore seeds that had been desiccated to a 7% WC, the number of protein spots and the levels of those spots were lower than in desiccation-tolerant Norway maple seeds. Post-translational modifications of PRXIIF in seeds at a 50% WC were detected via 2D electrophoresis and subsequent western blot analysis. The detected shift in the pI values (± 0.3) in A. pseudoplatanus was possibly caused by phosphorylation because several potential phosphorylation sites were predicted in silico for that protein. The gene and amino acid sequences were obtained and aligned with known sequences of other plant PRXIIF genes and proteins. High values of sequence identity were noted between the PRXIIF protein sequences of Acer species, Populus trichocarpa Torr. & A. Gray and Arabidopsis thaliana (L.) Heynh. The involvement of PRXIIF in defining the physiological differences between desiccation-tolerant and desiccation-sensitive Acer seeds is discussed in the context of its role in mitochondrial redox homeostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/FP13002 | DOI Listing |
Plant Biol (Stuttg)
January 2025
School of Life Sciences, Land Surface-Atmosphere Interactions, Technical University of Munich, Freising, Germany.
Hydraulic redistribution is considered a crucial dryland mechanism that may be important in temperate environments facing increased soil drying-wetting cycles. We investigated redistribution of soil water from deeper, moist to surface, dry soils in a mature mixed European beech forest and whether redistributed water was used by neighbouring native seedlings. In two experiments, we tracked hydraulic redistribution via (1) H labeling and (2) O natural abundance.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų 1, Girionys, LT-53101 Kaunas, Lithuania.
Trees growing in urban areas face increasing stress from atmospheric pollutants, with limited attention given to the early responses of young seedlings. This study aimed to address the knowledge gap regarding the effects of simulated pollutant exposure, specifically particulate matter (PM), elevated ozone (O), and carbon dioxide (CO) concentrations, on young seedlings of five tree species: Scots pine ( L.); Norway spruce ( (L.
View Article and Find Full Text PDFTree Physiol
January 2025
Laboratoire de Biologie du Développement, UMR 7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, F-75005 Paris, France.
Norway maple and sycamore belong to the Acer genus and produce desiccation-tolerant and desiccation-sensitive seeds, respectively. We investigated the seed germination process at the imbibed and germinated stages using metabolomic and proteomic approaches to determine why sycamore seeds germinate earlier and are more successful at establishing seedlings than Norway maple seeds under controlled conditions. Embryonic axes and embryonic axes with protruded radicles were analyzed at the imbibed and germinated stages, respectively.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Biological Sciences, University of Illinois Chicago, Chicago, IL, United States.
Parkinsonism Relat Disord
December 2024
Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway; Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway. Electronic address:
Introduction: Parkinson's disease (PD) is a progressive neurodegenerative disease, and biomarkers are needed to enhance earlier detection and monitoring. Alpha-synuclein, phosphorylated at serine 129 (pS129-α-syn), is the predominant form of α-syn found in Lewy bodies implicating an involvement in disease pathology. This review aims to systematically evaluate the evidence for pS129-α-syn detection in human biofluid samples of PD utilizing ELISA-based protein detection methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!