Fruit presence negatively affects photosynthesis by reducing leaf nitrogen in almond.

Funct Plant Biol

Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA.

Published: August 2014

Fruit presence often positively and seldom negatively affects leaf carbon assimilation rate in fruit-trees. In almond (Prunus dulcis (Mill.) DA Webb) the presence of fruit often results in the death of the fruit bearing spurs. The mechanism of this effect is unclear, but may be a consequence of diminished carbon assimilation rate in leaves adjacent to fruit and the subsequent depletion of nutrient and carbohydrates reserves. This study evaluated the influence of fruit on leaf carbon assimilation rate and leaf nitrogen throughout the season. Carbon assimilation rate (Aa), rubisco carboxylation capacity at leaf temperature (Vcmax@Tleaf), maximum rate of RubP regeneration at leaf temperature (Jmax@Tleaf), leaf nitrogen on a mass basis (N%) and area basis (Na), and specific leaf weight data were recorded. Fruit presence negatively affected leaf nitrogen concentration by a reduction in specific leaf weight and leaf nitrogen content. The impact of fruit presence on carbon assimilation rate was predominantly associated with the negative effect of fruit on Na and resulted in a significant reduction in Jmax@Tleaf and therefore in Aa, especially after full leaf and fruit expansion. The reduction in leaf area, leaf nitrogen, reduced Jmax@Tleaf and decreased carbon assimilation rate in the presence of fruit explains the negative effects of fruit presence on spur vitality.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP13343DOI Listing

Publication Analysis

Top Keywords

leaf nitrogen
24
carbon assimilation
24
assimilation rate
24
fruit presence
20
leaf
14
fruit
12
presence negatively
8
negatively leaf
8
leaf carbon
8
presence fruit
8

Similar Publications

Competition is ubiquitous and an important driver of tree mortality. Non-structural carbohydrates (NSCs, including soluble sugars and starch) and C-N-P stoichiometries are affected by the competitive status of trees and, in turn, physiologically determine tree growth and survival in competition. However, the physiological mechanisms behind tree mortality caused by intraspecific competition remain unclear.

View Article and Find Full Text PDF

Dufulin Impacts Plant Defense Against Tomato Yellow Leaf Curl Virus Infecting Tomato.

Viruses

December 2024

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.

(TYLCV) poses a significant threat to tomato production, leading to severe yield losses. The current control strategies primarily rely on the use of pesticides, which are often nonselective and costly. Therefore, there is an urgent need to identify more environmentally friendly alternatives.

View Article and Find Full Text PDF

Exploring the changes in plant functional traits and their relationship with the environment in karst climax communities across different latitudes can enhance our understanding of how these communities respond to environmental gradients. In this study, we focus on climax karst climax plant communities in Guizhou Province, China. We selected three sample sites located at varying latitudes and analyzed the variations in functional traits of the plant communities at these latitudes.

View Article and Find Full Text PDF

A Comparison of Rice Root Microbial Dynamics in Organic and Conventional Paddy Fields.

Microorganisms

December 2024

Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.

The assembly of plant root microbiomes is a dynamic process. Understanding the roles of root-associated microbiomes in rice development requires dissecting their assembly throughout the rice life cycle under diverse environments and exploring correlations with soil properties and rice physiology. In this study, we performed amplicon sequencing targeting fungal ITS and the bacterial 16S rRNA gene to characterize and compare bacterial and fungal community dynamics of the rice root endosphere and soil in organic and conventional paddy fields.

View Article and Find Full Text PDF

The development of copper-based materials with a high efficiency and low cost is desirable for use in iodine (I) remediation. Herein, Cu-nanoparticles-functionalized, ZIF-8 (Zeolite Imidazole Framework-8)-derived, nitrogen-doped carbon composites (Cu@Zn-NC) were synthesized by ball milling and pyrolysis processes. The as-prepared composites were characterized using SEM, BET, XRD, XPS, and FT-IR analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!