In the present work we studied oxidative stress as an important cause of seed deterioration during ageing in embryos from durum wheat grains stored at room temperature and at low temperature (10°C). The protective role of low temperature on seed viability was confirmed. The increase of hydrogen peroxide content during dry storage was strongly correlated with the decrease of germinability. Ascorbate and glutathione showed a good correlation with grain germinability and significantly increased upon imbibition, in particular in embryos from viable grains. Ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione peroxidase (GPX) and catalase (CAT) were studied quantitatively (enzymatic assays). APX, GR, and GPX were also studied qualitatively by native PAGE. The enzymes were active in dry, still viable, embryos whereas no activity was detected in non-viable embryos. With the exception of APX, all enzymatic activities decreased upon imbibition. The study of grains stored in different conditions indicated a negative correlation between the efficiency of the antioxidant enzymatic machinery and the age of the grain. The differences detected in differently stored materials confirmed that both germination parameters and the length of storage period are important in determining grain condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/FP11046 | DOI Listing |
Cryobiology
January 2025
ICAR-National Bureau of Plant Genetic Resources, New Delhi-110 012 INDIA.
Ex situ conservation of plant genetic resources (PGR) plays a crucial role in sustainable growth and development, as highlighted by the Global Strategy for Plant Conservation (GSPC). Seed genebanks, a key component of ex situ conservation, have been instrumental in preserving plant diversity. However, challenges arise with the conservation of non-orthodox (recalcitrant and intermediate) seeds and vegetative tissues, which are not amenable to storage in traditional genebanks at temperatures of -20°C.
View Article and Find Full Text PDFSensors (Basel)
January 2025
State Grid Zaozhuang Power Supply Company, Zaozhuang 277899, China.
Within the framework of 6G networks, the rapid proliferation of Internet of Things (IoT) devices, coupled with their decentralized and heterogeneous characteristics, presents substantial security challenges. Conventional centralized systems face significant challenges in effectively managing the diverse range of IoT devices, and they are inadequate in addressing the requirements for reduced latency and the efficient processing and analysis of large-scale data. To tackle these challenges, this paper introduces a zero-trust access control framework that integrates blockchain technology with inner-product encryption.
View Article and Find Full Text PDFInsects
January 2025
Department of Statistics, Oklahoma State University, 301 Mathematics, Statistics and Computer Sciences, Stillwater, OK 74078, USA.
Psocids are difficult to manage using grain protectants and phosphine hence research on non-chemical control methods. This study evaluated the effectiveness of (Reuter) (Hemiptera: Anthocoridae) at managing (Pearman) (Psocodea: Liposcelididae). The functional responses of adult♀ and nymphs of on a diet of nymphs, adult♂, and adult♀ of were determined under laboratory conditions at 28 ± 1 °C, 63 ± 5% RH, and a 0:24 (L:D) photoperiod.
View Article and Find Full Text PDFInsects
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
The lesser grain borer, (F.) (Coleoptera: Bostrichidae) and khapra beetle, E. (Coleoptera: Dermestidae) are primary stored-grain insect pests.
View Article and Find Full Text PDFInsects
December 2024
School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China.
The olfactory sensory system plays vital roles in daily activities, such as locating mate partners, foraging, and risk avoidance. Natural enemies can locate their prey through characteristic volatiles. However, little is known about whether prey can recognize the volatiles of their predators and if this recognition can increase the efficiency of prey escaping from predators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!