Genome-wide transcriptome analysis of seedling resistance to leaf rust conferred by Lr28 gene in wheat (Triticum aestivum L.) was conducted to identify differentially expressed genes during incompatible interaction. A virulent leaf rust race 77-5 was used for inoculation of resistant (HD2329+Lr28) and susceptible (HD2329 - Lr28) wheat NILs and cDNA-AFLP analyses was carried out. As many as 223 differential transcripts appeared following leaf rust inoculation; these included 122 transcripts that appeared exclusively in resistant NIL, whereas 39 transcripts appeared both in resistant and susceptible NILs. Sequence analyses of 37 transcripts, which appeared in the resistant NIL revealed that 15 transcripts had homology with genes involved in protein synthesis, signal transduction, transport, disease resistance and metabolism. The functions of remaining 22 transcripts could not be determined; these included six novel genes reported for the first time in wheat. Specific primers could be designed for 18 of the 37 transcripts, which included genes with putative and unknown functions. Quantitative real time PCR analysis was conducted using these 18 pairs of primers. A majority (13) of these transcripts appeared within 48h reaching a peak value at 96h in resistant NIL signifying their role in providing leaf rust resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP10246DOI Listing

Publication Analysis

Top Keywords

leaf rust
20
transcripts appeared
20
resistant nil
12
differentially expressed
8
expressed genes
8
seedling resistance
8
transcripts
8
appeared resistant
8
genes
5
leaf
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!