Regulation of stomatal movement and photosynthetic activity in guard cells of tomato abaxial epidermal peels by salicylic acid.

Funct Plant Biol

Department of Plant Biology, University of Szeged, H-6701 Szeged, Középfasor 52, PO Box 654, Hungary.

Published: December 2012

Salicylic acid (SA), a signalling molecule in plant-pathogen interactions induces stomatal closure in intact leaves and it has a direct control over stomatal movement by increasing the levels of reactive oxygen species (ROS) and nitric oxide (NO) in guard cells (GC). Stomatal closure on the abaxial epidermal peels of tomato leaves was induced at 10-7 and 10-3M SA but stomata remained open at 10-4M. At concentrations that reduced stomatal aperture, the ROS and NO levels were raised. The accumulation of ROS and NO could be prevented by specific scavengers, which were effective inhibitors of the SA-induced stomatal closure. In contrast with other plant species, the guard cells (GCs) of tomato did not show a long-lasting accumulation of ROS in the presence of 10-4M SA and their NO content decreased to below the control level, leading to stomatal opening. Increasing SA concentrations resulted in a significant decrease in the maximum and effective quantum yields of PSII photochemistry and in the photochemical quenching parameter of GCs. In the presence of 10-7 and 10-4M SA, the chloroplasts of GCs sustained a higher electron transport rate than in the presence of 10-3M, suggesting that the SA-induced inhibition of GC photosynthesis may affect stomatal closure at high SA concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP12187DOI Listing

Publication Analysis

Top Keywords

stomatal closure
16
guard cells
12
stomatal movement
8
abaxial epidermal
8
epidermal peels
8
salicylic acid
8
accumulation ros
8
stomatal
7
regulation stomatal
4
movement photosynthetic
4

Similar Publications

PME12-mutated plants displayed altered stomatal characteristics and susceptibility to ABA-induced closure. Despite changes in PME activity, the mutant exhibited enhanced thermotolerance. These findings suggest a complex interplay between pectin methylesterification, ABA response, and stomatal function, contributing to plant adaptation to heat stress.

View Article and Find Full Text PDF

Drought conditions severely curtail the ability of plants to accumulate biomass due to the closure of stomata and the decrease of photosynthetic assimilation rate. Additionally, there is a shift in the plant's metabolic processes toward the production of metabolites that offer protection and aid in osmoadaptation, as opposed to those required for development and growth. To limit water loss via non-stomatal transpiration, plants adjust the load and composition of cuticle waxes, which act as an additional barrier.

View Article and Find Full Text PDF

Manipulating stomatal aperture by silencing StSLAC1 affects potato plant-herbivore-parasitoid tritrophic interactions under drought stress.

New Phytol

January 2025

State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.

The effects of drought stress on stomatal opening dynamics, plant volatile organic compound (VOC) emissions and plant-insect interactions have been well-documented individually, but how they interact mechanistically remains poorly studied. Here, we studied how drought-triggered stomatal closure affects VOC emission and plant-trophic interactions by combining RNAi silencing, molecular biological and chemical analyses (GC-MS) of a potato-tuber moth-egg parasitoid tritrophic system. Drought stress attenuated stomatal apertures and VOC emissions, which made the potato (Solanum tuberosum L.

View Article and Find Full Text PDF

In this research, we sought to investigate how high temperature, salinity, and CO affect endogenous phytohormones, photosynthesis, and redox homeostasis in Caragana korshinskii Kom (C. korshinskii) leaves, as well as to comprehensively evaluate the plant's physiological response to multiple environmental stressors. The elevated temperature (e[T]), elevated Na (e[Na]), and elevated temperature and Na (e[T-Na]) treatments increased abscisic acid (ABA) and reduced zeatin-riboside (ZR), indole-3-acetic acid (IAA), and gibberellic acid (GA).

View Article and Find Full Text PDF

Tolerance to multiple abiotic stresses is mediated by interacting CNGC proteins that regulate Ca influx and stomatal movement in rice.

J Integr Plant Biol

January 2025

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.

Members of the cyclic nucleotide-gated channel (CNGC) proteins are reportedly involved in a variety of biotic and abiotic responses and stomatal movement. However, it is unknown if and how a single member could regulate multiple responses. Here we characterized three closely related CNGC genes in rice, OsCNGC14, OsCNGC15 and OsCNGC16, to determine whether they function in multiple abiotic stresses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!